| 1 | 
																						 
											 Tuttle KR, Brosius FC 3rd, Cavender MA, et al. SGLT2 inhibition for CKD and cardiovascular disease in type 2 diabetes: report of a scientific workshop sponsored by the national kidney foundation[J]. Am J Kidney Dis, 2021, 77(1): 94-109.
											 											 | 
										
																													
																						| 2 | 
																						 
											 Yang C, Wang HB, Zhao XJ, et al. CKD in China: evolving spectrum and public health implications[J]. Am J Kidney Dis, 2020, 76(2): 258-64.
											 											 | 
										
																													
																						| 3 | 
																						 
											 Tuttle KR, Cherney DZI. Therapeutic transformation for diabetic kidney disease[J]. Kidney Int, 2021, 99(2): 301-3.
											 											 | 
										
																													
																						| 4 | 
																						 
											 Pezzolesi MG, Krolewski AS. The genetic risk of kidney disease in type 2 diabetes[J]. Med Clin North Am, 2013, 97(1): 91-107.
											 											 | 
										
																													
																						| 5 | 
																						 
											 Alouffi S, Khan MWA. Dicarbonyls generation, toxicities, detoxifications and potential roles in diabetes complications[J]. Curr Protein Pept Sci, 2020, 21(9): 890-8.
											 											 | 
										
																													
																						| 6 | 
																						 
											 Noels H, Lehrke M, Vanholder R, et al. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations[J]. Nat Rev Nephrol, 2021, 17(8): 528-42.
											 											 | 
										
																													
																						| 7 | 
																						 
											 Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806.
											 											 | 
										
																													
																						| 8 | 
																						 
											 Jaikumkao K, Thongnak L, Htun KT, et al. Dapagliflozin and metformin in combination ameliorates diabetic nephropathy by suppressing oxidative stress, inflammation, and apoptosis and activating autophagy in diabetic rats[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(1): 166912.
											 											 | 
										
																													
																						| 9 | 
																						 
											 Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease[J]. Nephron, 2019, 143(1): 12-6.
											 											 | 
										
																													
																						| 10 | 
																						 
											 Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(11): 3798.
											 											 | 
										
																													
																						| 11 | 
																						 
											 Wu M, Han WX, Song S, et al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice[J]. Mol Cell Endocrinol, 2018, 478: 115-25.
											 											 | 
										
																													
																						| 12 | 
																						 
											 魏思灿, 林天来, 黄 玲, 等. 槲皮素通过PINK1/parkin通路激活线粒体自噬减轻大鼠脑缺血再灌注损伤[J]. 中国病理生理杂志, 2020, 36(12): 2251-7.
											 											 | 
										
																													
																						| 13 | 
																						 
											 Chai GR, Liu S, Yang HW, et al. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression[J]. Neural Regen Res, 2021, 16(7): 1344-50.
											 											 | 
										
																													
																						| 14 | 
																						 
											 Li XY, Chen RM, Lei XT, et al. Quercetin regulates ERα mediated differentiation of BMSCs through circular RNA[J]. Gene, 2021, 769: 145172.
											 											 | 
										
																													
																						| 15 | 
																						 
											 王建礼, 杨作成, 王 聪, 等. 槲皮素对糖尿病大鼠的降糖作用及机制研究[J]. 济宁医学院学报, 2018, 41(2): 135-8.
											 											 | 
										
																													
																						| 16 | 
																						 
											 Wang S, Du SS, Wang WZ, et al. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy[J]. Biomedecine Pharmacother, 2020, 130: 110573.
											 											 | 
										
																													
																						| 17 | 
																						 
											 高 啸, 沈 莹. HMGB1-RAGE/TLRs-NF-κB信号通路中关键蛋白的表达与糖尿病肾病的关系[J]. 转化医学杂志, 2020, 9(6): 331-4, 339.
											 											 | 
										
																													
																						| 18 | 
																						 
											 黄小翠,于赵龙,祝子健,等.槲皮素对糖尿病大鼠肾脏保护主义研究[J].赣南医学院学报, 2023, 43(3): 262-6.
											 											 | 
										
																													
																						| 19 | 
																						 
											 Hu TY, Yue JL, Tang QW, et al. The effect of quercetin on diabetic nephropathy (DN): a systematic review and meta-analysis of animal studies[J]. Food Funct, 2022, 13(9): 4789-803.
											 											 | 
										
																													
																						| 20 | 
																						 
											 Furman BL. Streptozotocin-induced diabetic models in mice and rats[J]. Curr Protoc Pharmacol, 2015, 70: 5.47.1-5.47.20.
											 											 | 
										
																													
																						| 21 | 
																						 
											 茅莉娜, 王凤岩, 周轶琳,等.糖尿病肾病大鼠模型的制备[J].中文科技期刊数据库(全文版)医药卫生, 2023, 9: 11-4.
											 											 | 
										
																													
																						| 22 | 
																						 
											 张书力, 冯 丹.槲皮素通过下调缓激肽受体B1表达减轻糖尿病大鼠神经病理性疼痛[J].中国免疫学杂志, 2024, 40(2): 337-42.
											 											 | 
										
																													
																						| 23 | 
																						 
											 张煜敏,张桢烨,钱玲玲,等. 槲皮素通过AKT/FOXO3信号通路保护糖尿病大鼠心肌细胞[J]. 江苏大学学报(医学版), 2021, 31(3):185-9.
											 											 | 
										
																													
																						| 24 | 
																						 
											 Maksymchuk O, Shysh A, Rosohatska I, et al. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1[J]. Pharmacol Rep, 2017, 69(6): 1386-92.
											 											 | 
										
																													
																						| 25 | 
																						 
											 Tang LX, Li K, Zhang Y, et al. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats[J]. Sci Rep, 2020, 10(1): 2440.
											 											 | 
										
																													
																						| 26 | 
																						 
											 王兴红,邓海峰,孙缦利. 槲皮素对糖尿病大鼠肾脏GSK3β信号通路的影响[J].中阿科技论坛(中英文), 2021, 9: 73-5.
											 											 | 
										
																													
																						| 27 | 
																						 
											 Lontchi-Yimagou E, Sobngwi E, Matsha TE, et al. Diabetes mellitus and inflammation[J]. Curr Diab Rep, 2013, 13(3): 435-44.
											 											 | 
										
																													
																						| 28 | 
																						 
											 Mora C, Navarro JF. Inflammation and diabetic nephropathy[J]. Curr Diab Rep, 2006, 6(6): 463-8.
											 											 | 
										
																													
																						| 29 | 
																						 
											 Volz HC, Seidel C, Laohachewin D, et al. HMGB1: the missing link between diabetes mellitus and heart failure[J]. Basic Res Cardiol, 2010, 105(6): 805-20.
											 											 | 
										
																													
																						| 30 | 
																						 
											 Chen XC, Ma J, Kwan T, et al. Blockade of HMGB1 attenuates diabetic nephropathy in mice[J]. Sci Rep, 2018, 8(1): 8319.
											 											 | 
										
																													
																						| 31 | 
																						 
											 Markó L, Vigolo E, Hinze C, et al. Tubular epithelial NF-κB activity regulates ischemic AKI[J]. J Am Soc Nephrol, 2016, 27(9): 2658-69.
											 											 | 
										
																													
																						| 32 | 
																						 
											 Bönner F, Gastl M, Nienhaus F, et al. Regional analysis of inflammation and contractile function in reperfused acute myocardial infarction by in vivo 19F cardiovascular magnetic resonance in pigs[J]. Basic Res Cardiol, 2022, 117(1): 21.
											 											 |