| [1] | 
																						 
											 Dobruch J, Oszczudłowski M. Bladder Cancer: Current Challenges and Future Directions. Medicina (Kaunas), 2021, 57(8):749. doi:10.3390/medicina57080749 
											 											 | 
										
																													
																						| [2] | 
																						 
											 Galsky MD, Guan X, Rishipathak D, et al. Immunomodulatory effects and improved outcomes with cisplatin-versus carboplatin-based chemotherapy plus atezolizumab in urothelial cancer[J]. Cell Rep Med, 2024, 5(2):101393. doi:10.1016/j.xcrm.2024.101393 
											 											 | 
										
																													
																						| [3] | 
																						 
											 Xu J, Zhang H, Zhang L, et al. Real-world effectiveness and safety of RC48-ADC alone or in combination with PD-1 inhibitors for patients with locally advanced or metastatic urothelial carcinoma: a multicenter, retrospective clinical study[J]. Cancer Med, 2023, 12(23): 21159-71. doi:10.1002/cam4.6680 
											 											 | 
										
																													
																						| [4] | 
																						 
											 Zhou T, Xiao Z, Lu J, et al. IGF2BP3-mediated regulation of GLS and GLUD1 gene expression promotes treg-induced immune escape in human cervical cancer. Am J Cancer Res, 2023, 13(11): 5289-5305.
											 											 | 
										
																													
																						| [5] | 
																						 
											 van Gulijk M, van Krimpen A, Schetters S, et al. PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance[J]. Sci Immunol, 2023, 8(83): eabn6173. doi:10.1126/sciimmunol.abn6173 
											 											 | 
										
																													
																						| [6] | 
																						 
											 Okato A, Utsumi T, Ranieri M, et al. FGFR inhibition augments anti-PD-1 efficacy in murine FGFR3-mutant bladder cancer by abrogating immunosuppression[J]. J Clin Invest, 2024, 134(2): e169241. doi:10.1016/j.eururo.2024.03.031 
											 											 | 
										
																													
																						| [7] | 
																						 
											 李 中, 黄 旭, 陈守峰, 等. 吡非尼酮通过抑制TGF-β1通路和炎症反应预防大鼠尿道损伤后的纤维化及狭窄[J]. 南方医科大学学报, 2022, 42(03): 411-417. doi:10.12122/j.issn.1673-4254.2022.03.14 
											 											 | 
										
																													
																						| [8] | 
																						 
											 Bluestone JA, McKenzie BS, Beilke J, et al. Opportunities for Treg cell therapy for the treatment of human disease[J]. Front Immunol, 2023, 14: 1166135. doi:10.3389/fimmu.2023.1166135 
											 											 | 
										
																													
																						| [9] | 
																						 
											 Saleh R, Elkord E. Treg-mediated acquired resistance to immune checkpoint inhibitors[J]. Cancer Lett, 2019, 457: 168-79. doi:10.1016/j.canlet.2019.05.003 
											 											 | 
										
																													
																						| [10] | 
																						 
											 Li S, Zhang X, Pang D. Pirfenidone inhibits CCL2-mediated Treg chemotaxis induced by palbociclib and fulvestrant in HR+/HER2- breast cancer[J]. Int Immunopharmacol, 2024, 142(Pt A): 113059. doi:10.1016/j.intimp.2024.113059 
											 											 | 
										
																													
																						| [11] | 
																						 
											 陈守峰, 张舒超, 樊伟林, 等. 吡非尼酮联合PD-L1抑制剂抑制小鼠异位膀胱肿瘤的生长[J].南方医科大学学报, 2024, 44(02): 210-6. doi:10.12122/j.issn.1673-4254.2024.02.02 
											 											 | 
										
																													
																						| [12] | 
																						 
											 Alsomali H, Palmer E, Aujayeb A, et al. Early diagnosis and treatment of idiopathic pulmonary fibrosis: a narrative review[J]. Pulm Ther, 2023, 9(2): 177-93. doi:10.1007/s41030-023-00216-0 
											 											 | 
										
																													
																						| [13] | 
																						 
											 Zhang S, Wang Y, Luo D, et al. Pirfenidone inhibits TGF-β1-induced metabolic reprogramming during epithelial-mesenchymal transition in non-small cell lung cancer[J]. J Cell Mol Med, 2024, 28(3): e18059. doi:10.1111/jcmm.18059 
											 											 | 
										
																													
																						| [14] | 
																						 
											 Yamamoto Y, Yano Y, Kuge T, et al. Safety and effectiveness of pirfenidone combined with carboplatin-based chemotherapy in patients with idiopathic pulmonary fibrosis and non-small cell lung cancer: a retrospective cohort study[J]. Thorac Cancer, 2020, 11(11): 3317-25. doi:10.1111/1759-7714.13675 
											 											 | 
										
																													
																						| [15] | 
																						 
											 Shi SY, Zhao LW, Liu CB, et al. Pirfenidone promotes cell cycle arrest and apoptosis of triple-negative breast cancer cells by suppressing Hedgehog/GLI1 signaling[J]. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(5): 5915-25. doi:10.1007/s00210-024-03652-0 
											 											 | 
										
																													
																						| [16] | 
																						 
											 Zhang J, Zhang JR, Lin RG, et al. Pirfenidone antagonizes TGF-β1-mediated gabapentin resistance via reversal of desmoplasia and the 'cold' microenvironment in pancreatic cancer[J]. Cancer Lett, 2024, 605: 217287. doi:10.1016/j.canlet.2024.217287 
											 											 | 
										
																													
																						| [17] | 
																						 
											 Jamialahmadi H, Nazari SE, TanzadehPanah H, et al. Targeting transforming growth factor beta (TGF‑β) using Pirfenidone, a potential repurposing therapeutic strategy in colorectal cancer[J]. Sci Rep, 2023, 13(1): 14357. doi:10.1038/s41598-023-41550-2 
											 											 | 
										
																													
																						| [18] | 
																						 
											 Kimura Y, Fujimori M, Rajagopalan NR, et al. Macrophage activity at the site of tumor ablation can promote murine urothelial cancer via transforming growth factor-β1[J]. Front Immunol, 2023, 14: 1070196. doi:10.3389/fimmu.2023.1070196 
											 											 | 
										
																													
																						| [19] | 
																						 
											 Park J, Hsueh PC, Li ZY, et al. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity[J]. Immunity, 2023, 56(1): 32-42. doi:10.1016/j.immuni.2022.12.008 
											 											 | 
										
																													
																						| [20] | 
																						 
											 de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. doi:10.1016/j.ccell.2023.02.016 
											 											 | 
										
																													
																						| [21] | 
																						 
											 Aboulkheyr Es H, Zhand S, Thiery JP, et al. Pirfenidone reduces immune-suppressive capacity of cancer-associated fibroblasts through targeting CCL17 and TNF-beta[J]. Integr Biol: Camb, 2020, 12(7): 188-97. doi:10.1093/intbio/zyaa014 
											 											 | 
										
																													
																						| [22] | 
																						 
											 Rastegar-Pouyani N, Abdolvahab MH, Farzin MA, et al. Targeting cancer-associated fibroblasts with pirfenidone: a novel approach for cancer therapy[J]. Tissue Cell, 2024, 91: 102624. doi:10.1016/j.tice.2024.102624 
											 											 | 
										
																													
																						| [23] | 
																						 
											 Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy[J]. Trends Cancer, 2023, 9(11): 911-27. doi:10.1016/j.trecan.2023.07.015 
											 											 | 
										
																													
																						| [24] | 
																						 
											 Exposito F, Redrado M, Houry M, et al. PTEN Loss Confers Resistance to Anti-PD-1 Therapy in Non-Small Cell Lung Cancer by Increasing Tumor Infiltration of Regulatory T Cells[J]. Cancer Res, 2023, 83(15): 2513-26. doi:10.1158/0008-5472.can-22-3023 
											 											 | 
										
																													
																						| [25] | 
																						 
											 Murai R, Itoh Y, Kageyama S, et al. Prediction of intravesical recurrence of non-muscle-invasive bladder cancer by evaluation of intratumoral Foxp3+ T cells in the primary transurethral resection of bladder tumor specimens[J]. PLoS One, 2018, 13(9): e0204745. doi:10.1371/journal.pone.0204745 
											 											 | 
										
																													
																						| [26] | 
																						 
											 Jou YC, Tsai YS, Lin CT, et al. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation[J]. Oncotarget, 2016, 7(40): 65403-17. doi:10.18632/oncotarget.11395 
											 											 | 
										
																													
																						| [27] | 
																						 
											 Basu S, Hubbard B, Shevach EM. Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells[J]. J Leukoc Biol, 2015, 97(2): 279-83. doi:10.1189/jlb.2ab0514-273rr 
											 											 | 
										
																													
																						| [28] | 
																						 
											 Koll FJ, Banek S, Kluth L, et al. Tumor-associated macrophages and Tregs influence and represent immune cell infiltration of muscle-invasive bladder cancer and predict prognosis[J]. J Transl Med, 2023, 21(1): 124. doi:10.1186/s12967-023-03949-3 
											 											 |