南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (3): 661-668.doi: 10.12122/j.issn.1673-4254.2025.03.24
• • 上一篇
富丽萍1(), 袁立霞2(
), 王杰1, 陈学蓝1, 柯桂芝1, 黄煜1, 杨心仪1, 刘刚1(
)
收稿日期:
2024-11-19
出版日期:
2025-03-20
发布日期:
2025-03-28
通讯作者:
刘刚
E-mail:lipingfu2021@163.com;cnylxcm@163.com;lg2781@smu.edu
作者简介:
富丽萍,在读博士研究生,E-mail: lipingfu2021@163.com基金资助:
Liping FU1(), Lixia YUAN2(
), Jie WANG1, Xuelan CHEN1, Guizhi KE1, Yu HUANG1, Xinyi YANG1, Gang LIU1(
)
Received:
2024-11-19
Online:
2025-03-20
Published:
2025-03-28
Contact:
Gang LIU
E-mail:lipingfu2021@163.com;cnylxcm@163.com;lg2781@smu.edu
Supported by:
摘要:
肌肉骨骼疾病是一种病变广泛且发病率高的疾病,存在巨大的疾病负担,长期的药物治疗面临着药物毒副作用和治疗效果不佳的困境。低强度脉冲超声(LIPUS)是以低强度输送并以脉冲波模式输出的特殊类型的超声,具有最小的热效应的同时又能保证声能向目标组织的稳定输出,能够为肌肉骨骼疾病的治疗应用提供无创且疗效显著的物理刺激。在动物和临床研究中,LIPUS已被证明可以加速新鲜骨折、骨不连的愈合。LIPUS在软组织再生和抑制炎症反应方面的有效性也已证实。近年来相关研究表明,LIPUS在骨骼肌损伤治疗以及再生修复中具有巨大前景。本综述阐述了 LIPUS在常见的肌肉骨骼疾病,包括骨折与骨不连、肌肉损伤和骨关节炎中的机制研究以及临床治疗应用中的最新进展及其相关机制,介绍了目前市场上LIPUS设备的参数标准,归纳总结相关治疗手段及当前面临的问题和挑战,并展望未来研究方向,旨在系统梳理LIPUS在常见肌骨疾病中的治疗策略,为LIPUS的治疗和应用提供参考。
富丽萍, 袁立霞, 王杰, 陈学蓝, 柯桂芝, 黄煜, 杨心仪, 刘刚. 近十年低强度脉冲超声在肌骨疾病治疗中的应用进展[J]. 南方医科大学学报, 2025, 45(3): 661-668.
Liping FU, Lixia YUAN, Jie WANG, Xuelan CHEN, Guizhi KE, Yu HUANG, Xinyi YANG, Gang LIU. Advances of low-intensity pulsed ultrasound for treatment of musculoskeletal disorders in the past decade[J]. Journal of Southern Medical University, 2025, 45(3): 661-668.
1 | Orbai AM, de Wit M, Mease P, et al. International patient and physician consensus on a psoriatic arthritis core outcome set for clinical trials[J]. Ann Rheum Dis, 2017, 76(4): 673-80. |
2 | Duarte-García A, Leung YY, Coates LC, et al. Endorsement of the 66/68 joint count for the measurement of musculoskeletal disease activity: OMERACT 2018 psoriatic arthritis workshop report[J]. J Rheumatol, 2019, 46(8): 996-1005. |
3 | Karmacharya P, Wright K, Achenbach SJ, et al. Diagnostic delay in psoriatic arthritis: a population-based study[J]. J Rheumatol, 2021, 48(9): 1410-6. |
4 | Holley AL, Wilson AC, Palermo TM. Predictors of the transition from acute to persistent musculoskeletal pain in children and adolescents: a prospective study[J]. Pain, 2017, 158(5): 794-801. |
5 | Allami M, Mousavi B, Masoumi M, et al. A comprehensive musculo-skeletal and peripheral nervous system assessment of war-related bilateral upper extremity amputees[J]. Mil Med Res, 2016, 3: 34. |
6 | Yang JW, Kang YH, Zhao WL, et al. Evaluation of patches for rotator cuff repair: a systematic review and meta-analysis based on animal studies[J]. Bioact Mater, 2022, 10: 474-91. |
7 | Bucher CH, Berkmann JC, Burkhardt LM, et al. Local immune cell contributions to fracture healing in aged individuals - A novel role for interleukin 22[J]. Exp Mol Med, 2022, 54(8): 1262-76. |
8 | Chen NJ, Fong DYT, Wong JYH. Trends in musculoskeletal rehabilitation needs in China from 1990 to 2030: a Bayesian age-period-cohort modeling study[J]. Front Public Health, 2022, 10: 869239. |
9 | Cruz-Almeida Y, Rosso A, Marcum Z, et al. Associations of musculoskeletal pain with mobility in older adults: potential cerebral mechanisms[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(9): 1270-6. |
10 | Steinhausen HC, Villumsen MD, Hørder K, et al. Increased risk of somatic diseases following anorexia nervosa in a controlled nationwide cohort study[J]. Int J Eat Disord, 2022, 55(6): 754-62. |
11 | Assis LD, de Paula JJ, Assis MG, et al. Psychometric properties of the Brazilian version of pfeffer’s functional activities questionnaire[J]. Front Aging Neurosci, 2014, 6: 255. |
12 | Klijs B, Nusselder WJ, Looman CW, et al. Educational disparities in the burden of disability: contributions of disease prevalence and disabling impact[J]. Am J Public Health, 2014, 104(8): e141-8. |
13 | Zheng ZG, Johansson H, Harvey NC, et al. Potential adverse effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on bisphosphonate efficacy: an exploratory post hoc analysis from a randomized controlled trial of clodronate[J]. J Bone Miner Res, 2022, 37(6): 1117-24. |
14 | Majuta LA, Mitchell SAT, Kuskowski MA, et al. Anti-nerve growth factor does not change physical activity in normal young or aging mice but does increase activity in mice with skeletal pain[J]. Pain, 2018, 159(11): 2285-95. |
15 | Qureshi S, Ali G, Idrees M, et al. Selected thiadiazine-Thione derivatives attenuate neuroinflammation in chronic constriction injury induced neuropathy[J]. Front Mol Neurosci, 2021, 14: 728128. |
16 | Meade LB, Bearne LM, Sweeney LH, et al. Behaviour change techniques associated with adherence to prescribed exercise in patients with persistent musculoskeletal pain: Systematic review[J]. Br J Health Psychol, 2019, 24(1): 10-30. |
17 | Sun E, Moshfegh J, Rishel CA, et al. Association of early physical therapy with long-term opioid use among opioid-naive patients with musculoskeletal pain[J]. JAMA Netw Open, 2018, 1(8): e185909. |
18 | Yang XB, Li P, Lei JY, et al. Integrated application of low-intensity pulsed ultrasound in diagnosis and treatment of atrophied skeletal muscle induced in tail-suspended rats[J]. Int J Mol Sci, 2022, 23(18): 10369. |
19 | Yang T, Liang C, Chen L, et al. Low-intensity pulsed ultrasound alleviates hypoxia-induced chondrocyte damage in temporo-mandibular disorders by modulating the hypoxia-inducible factor pathway[J]. Front Pharmacol, 2020, 11: 689. |
20 | Wang JW, Lai B, Nanayakkara G, et al. Experimental data-mining analyses reveal new roles of low-intensity ultrasound in differentiating cell death regulatome in cancer and non-cancer cells via potential modulation of chromatin long-range interactions[J]. Front Oncol, 2019, 9: 600. |
21 | Yao H, Zhang L, Yan SJ, et al. Low-intensity pulsed ultrasound/nanomechanical force generators enhance osteogenesis of BMSCs through microfilaments and TRPM7[J]. J Nanobiotechnology, 2022, 20(1): 378. |
22 | Wang YJ, Li J, Qiu Y, et al. Low-intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1-mediated SDF-1 expression[J]. Int J Mol Med, 2018, 42(1): 322-30. |
23 | Egge N, Arneaud SLB, Fonseca RS, et al. Trauma-induced regulation of VHP-1 modulates the cellular response to mechanical stress[J]. Nat Commun, 2021, 12(1): 1484. |
24 | Jiang XX, Savchenko O, Li YF, et al. A review of low-intensity pulsed ultrasound for therapeutic applications[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-18. |
25 | Sato M, Kuroda S, Mansjur KQ, et al. Low-intensity pulsed ultrasound rescues insufficient salivary secretion in autoimmune sialadenitis[J]. Arthritis Res Ther, 2015, 17: 278. |
26 | Inoue S, Li CX, Hatakeyama J, et al. Higher-intensity ultrasound accelerates fracture healing via mechanosensitive ion channel Piezo1[J]. Bone, 2023, 177: 116916. |
27 | Jiang WH, Jin YY, Zhang SW, et al. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis[J]. Bone Res, 2022, 10(1): 27. |
28 | Mori S, Matsukawa S, Kawase M, et al. Induced electric potential in cortical bone and cartilage by ultrasound irradiation[J]. J Acoust Soc Am, 2016, 140(): 3189. |
29 | Sun LJ, An SS, Zhang ZH, et al. Molecular and metabolic mechanism of low-intensity pulsed ultrasound improving muscle atrophy in hindlimb unloading rats[J]. Int J Mol Sci, 2021, 22(22): 12112. |
30 | Wang Y, Xiao QY, Zhong WJ, et al. Low-intensity pulsed ultrasound promotes periodontal regeneration in a beagle model of furcation involvement[J]. Front Bioeng Biotechnol, 2022, 10: 961898. |
31 | Shimizu T, Fujita N, Tsuji-Tamura K, et al. Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing[J]. Sci Rep, 2021, 11(1): 10298. |
32 | Buarque de Gusmão CV, Batista NA, Vidotto Lemes VT, et al. Effect of low-intensity pulsed ultrasound stimulation, extracorporeal shockwaves and radial pressure waves on Akt, BMP-2, ERK-2, FAK and TGF-β1 during bone healing in rat tibial defects[J]. Ultrasound Med Biol, 2019, 45(8): 2140-61. |
33 | Chan YS, Hsu KY, Kuo CH, et al. Using low-intensity pulsed ultrasound to improve muscle healing after laceration injury: an in vitro and in vivo study[J]. Ultrasound Med Biol, 2010, 36(5): 743-51. |
34 | Abudupataer M, Zou WH, Zhang WW, et al. Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation[J]. J Cell Mol Med, 2019, 23(12): 8392-409. |
35 | Zheng C, Wu SM, Lian H, et al. Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways[J]. J Cell Mol Med, 2019, 23(3): 1963-75. |
36 | Chen YZ, Luo XQ, Liu Y, et al. Targeted nanobubbles of PD-L1 MAb combined with doxorubicin as a synergistic tumor repressor in hepatocarcinoma[J]. Int J Nanomedicine, 2022, 17: 3989-4008. |
37 | Duan HM, Chen SJ, Mai XD, et al. Low-intensity pulsed ultrasound (LIPUS) promotes skeletal muscle regeneration by regulating PGC-1α/AMPK/GLUT4 pathways in satellite cells/myoblasts[J]. Cell Signal, 2024, 117: 111097. |
38 | Wang J, Tan JY, Qi Q, et al. miR-487b-3p suppresses the proliferation and differentiation of myoblasts by targeting IRS1 in skeletal muscle myogenesis[J]. Int J Biol Sci, 2018, 14(7): 760-74. |
39 | Lin ZJ, Shen DN, Zhou WX, et al. Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration[J]. Bioact Mater, 2021, 6(8): 2315-30. |
40 | Atherton P, Lausecker F, Harrison A, et al. Low-intensity pulsed ultrasound promotes cell motility through vinculin-controlled Rac1 GTPase activity[J]. J Cell Sci, 2017, 130(14): 2277-91. |
41 | Cao H, Fu YF, Zhang ZZ, et al. Unbiased transcriptome mapping and modeling identify candidate genes and compounds of osteoarthritis[J]. Front Pharmacol, 2022, 13: 888533. |
42 | Liao Q, Li BJ, Li Y, et al. Low-intensity pulsed ultrasound promotes osteoarthritic cartilage regeneration by BMSC-derived exosomes via modulating the NF‑κB signaling pathway[J]. Int Immuno-pharmacol, 2021, 97: 107824. |
43 | Uddin SZ, Richbourgh B, Ding Y, et al. Chondro-protective effects of low intensity pulsed ultrasound[J]. Osteoarthritis Cartilage, 2016, 24(11): 1989-98. |
44 | Bian TY, Meng W, Qiu MH, et al. Noninvasive ultrasound stimulation of ventral tegmental area induces reanimation from general anaesthesia in mice[J]. Research, 2021, 2021: 2674692. |
45 | Kamatsuki Y, Aoyama E, Furumatsu T, et al. Possible reparative effect of low-intensity pulsed ultrasound (LIPUS) on injured Meniscus [J]. J Cell Commun Signal, 2019, 13(2): 193-207. |
46 | Zhang B, Chen HG, Ouyang JJ, et al. SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1β and contributes to LIPUS-mediated anti-inflammatory effect[J]. Autophagy, 2020, 16(7): 1262-78. |
47 | Jingushi S, Mizuno K, Matsushita T, et al. Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures[J]. J Orthop Sci, 2007, 12(1): 35-41. |
48 | Urita A, Iwasaki N, Kondo M, et al. Effect of low-intensity pulsed ultrasound on bone healing at osteotomy sites after forearm bone shortening[J]. J Hand Surg Am, 2013, 38(3): 498-503. |
49 | Schofer MD, Block JE, Aigner J, et al. Improved healing response in delayed unions of the Tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial[J]. BMC Musculo-skelet Disord, 2010, 11: 229. |
50 | Leighton R, Tracy Watson J, Giannoudis P, et al. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): a systematic review and meta-analysis[J]. Injury, 2017, 48(7): 1339-47. |
51 | Poolman RW, Agoritsas T, Siemieniuk RAC, et al. Low intensity pulsed ultrasound (LIPUS) for bone healing: a clinical practice guideline[J]. BMJ, 2017, 356: j576. |
52 | Fleckenstein J, Friton M, Himmelreich H, et al. Effect of a single administration of focused extracorporeal shock wave in the relief of delayed-onset muscle soreness: results of a partially blinded randomized controlled trial[J]. Arch Phys Med Rehabil, 2017, 98(5): 923-30. |
53 | Santamato A, Panza F, Notarnicola A, et al. Is extracorporeal shockwave therapy combined with isokinetic exercise more effective than extracorporeal shockwave therapy alone for subacromial impingement syndrome? A randomized clinical trial[J]. J Orthop Sports Phys Ther, 2016, 46(9): 714-25. |
54 | Miao SD, Nowicki M, Cui HT, et al. 4D anisotropic skeletal muscle tissue constructs fabricated by staircase effect strategy[J]. Biofabrication, 2019, 11(3): 035030. |
55 | Zhao HB, Liang T, Tang YJ, et al. Single-cell transcriptomics analysis of the pathogenesis of tendon injury[J]. Oxid Med Cell Longev, 2022, 2022: 7887782. |
56 | Chen K, Zhang XZ, Li Z, et al. Excessive sulfur oxidation in endoplasmic reticulum drives an inflammatory reaction of chondro-cytes in aging mice[J]. Front Pharmacol, 2022, 13: 1058469. |
57 | Jia L, Wang Y, Chen JY, et al. Efficacy of focused low-intensity pulsed ultrasound therapy for the management of knee osteoarthritis: a randomized, double blind, placebo-controlled trial[J]. Sci Rep, 2016, 6: 35453. |
58 | Paolillo FR, Paolillo AR, João JP, et al. Ultrasound plus low-level laser therapy for knee osteoarthritis rehabilitation: a randomized, placebo-controlled trial[J]. Rheumatol Int, 2018, 38(5): 785-93. |
59 | Kim ED, Won YH, Park SH, et al. Efficacy and safety of a stimulator using low-intensity pulsed ultrasound combined with transcutaneous electrical nerve stimulation in patients with painful knee osteoarthritis[J]. Pain Res Manag, 2019, 2019: 7964897. |
60 | Neogi T, Hunter DJ, Churchill M, et al. Observed efficacy and clinically important improvements in participants with osteoarthritis treated with subcutaneous tanezumab: results from a 56-week randomized NSAID-controlled study[J]. Arthritis Res Ther, 2022, 24(1): 78. |
61 | Jones SE, Campbell PK, Kimp AJ, et al. Evaluation of a novel e-learning program for physiotherapists to manage knee osteoarthritis via telehealth: qualitative study nested in the PEAK (physiotherapy exercise and physical activity for knee osteoarthritis) randomized controlled trial[J]. J Med Internet Res, 2021, 23(4): e25872. |
62 | Xiang X, Liu H, Wang LY, et al. Ultrasound combined with SDF-1α chemotactic microbubbles promotes stem cell homing in an osteoarthritis model[J]. J Cell Mol Med, 2020, 24(18): 10816-29. |
63 | Mierzwa D, Szadzińska J, Gapiński B, et al. Assessment of ultrasound-assisted vacuum impregnation as a method for modifying cranberries' quality[J]. Ultrason Sonochem, 2022, 89: 106117. |
64 | Brink HW, Loomans MGLC, Mobach MP, et al. Classrooms' indoor environmental conditions affecting the academic achievement of students and teachers in higher education: a systematic literature review[J]. Indoor Air, 2021, 31(2): 405-25. |
65 | Wong AW, Fite BZ, Liu Y, et al. Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models[J]. J Clin Invest, 2016, 126(1): 99-111. |
66 | Yue Y, Yang XM, Zhang L, et al. Low-intensity pulsed ultrasound upregulates pro-myelination indicators of Schwann cells enhanced by co-culture with adipose-derived stem cells[J]. Cell Prolif, 2016, 49(6): 720-8. |
67 | Li CH, Xiao CR, Zhan LZ, et al. Wireless electrical stimulation at the nanoscale interface induces tumor vascular normalization[J]. Bioact Mater, 2022, 18: 399-408. |
[1] | 谢梦瑶, 杨敏, 李欣, 杜永洪. 低强度脉冲超声联合制霉菌素可协同抑制兔阴道白色念珠菌生物被膜感染[J]. 南方医科大学学报, 2025, 45(2): 296-303. |
[2] | 付长龙, 林艳铭, 兰书洁, 陈悦, 李超, 陆诗雨, 林晴. 透骨消痛胶囊调控Nav1.7减轻膝骨关节炎小鼠软骨细胞退变[J]. 南方医科大学学报, 2024, 44(11): 2074-2081. |
[3] | 周 巧, 刘 健, 万 磊, 朱 艳, 齐亚军, 胡月迪. 新风胶囊抑制软骨细胞炎症和细胞外基质降解:基于调控miR-502-5p/TRAF2/NF-κB轴[J]. 南方医科大学学报, 2024, 44(1): 108-118. |
[4] | 郑 祥, 高颂爱, 尤 浩, 王浩琦, 高彦平, 王金丽, 李 嘉, 李 玲. 电针可改善骨关节炎大鼠的关节炎症和运动功能:基于调控Wnt-7B/β-catenin信号通路[J]. 南方医科大学学报, 2023, 43(4): 590-596. |
[5] | 唐文韬, 邓 娟, 贺思程, 李君粉, 周艺情, 王 嫣. 低强度脉冲超声抑制脓毒症大鼠脾脏淋巴细胞的凋亡[J]. 南方医科大学学报, 2023, 43(10): 1789-1795. |
[6] | 陈 昕, 齐秀春, 曹玉净, 李 扬, 李浩亮, 王前进, 艾进伟. 靛玉红可减轻骨关节炎大鼠的软骨细胞炎症和损伤[J]. 南方医科大学学报, 2022, 42(9): 1381-1388. |
[7] | 牛 鸣, 王秋入, 李军伟, 王 同, 吴旭年, 蔡经纬, 王旭勃, 康鹏德. 全膝关节置换术中采用内侧髌旁软组织重叠缝合法处理重度膝关节骨关节炎合并固定性髌骨脱位的早中期临床结果[J]. 南方医科大学学报, 2022, 42(2): 244-249. |
[8] | 梅 伟, 洪博文, 黄桂成. 大鼠膝骨关节炎模型中高迁移率族蛋白1的高表达机制[J]. 南方医科大学学报, 2021, 41(8): 1142-1149. |
[9] | 鲍丙溪, 刘 健, 万 磊, 张 颖, 龙 琰, 孙广瀚. 新风胶囊通过 miR-23a-3p/PTEN/PI3K/AKT/mTOR 抑制骨关节炎CD4+T与软骨细胞共培养的免疫炎症[J]. 南方医科大学学报, 2021, 41(4): 483-494. |
[10] | 罗东,汪威,陈俊林,刘宝茹,陈锦云,王嫣,陈文直. 低强度脉冲超声对阿霉素联合环磷酰胺化疗后大鼠造血功能的影响[J]. 南方医科大学学报, 2019, 39(07): 836-. |
[11] | 陈永,邱富娟,朱兴旺,莫海月,吴自勍,肖长虹. 血管翳并非类风湿关节炎的专利—膝骨关节炎血管翳病理形态观察[J]. 南方医科大学学报, 2019, 39(06): 747-. |
[12] | 赵其宏,王其友,徐杰,王嘉锋,邓小明. 碘乙酸钠诱导的骨关节炎疼痛大鼠背根神经节KCNA2 的表达[J]. 南方医科大学学报, 2019, 39(05): 579-. |
[13] | 曲良超,严金秀,蒋章颉,宋志平,罗佛全,彭清华. 低强度脉冲超声预处理通过激活胆碱能抗炎通路抑制HMGB1表达减轻肺缺血再灌注损伤[J]. 南方医科大学学报, 2018, 38(09): 1061-. |
[14] | 刘菲,李学智,付妮妮,席小芳,任毅,杨晓光,张愉. 短刺法对兔膝骨关节炎软骨细胞Sox9、VEGF和ColⅩ表达的影响[J]. 南方医科大学学报, 2016, 36(07): 997-. |
[15] | 钟洪;. 内科杂病中药药对应用[J]. 南方医科大学学报, 2006, 26(08): 1213-1214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||