1 |
Diamond LE, Grant T, Uhlrich SD. Osteoarthritis year in review 2023: Biomechanics[J]. Osteoarthritis Cartilage, 2024, 32(2): 138-47.
|
2 |
Gelber AC. Knee osteoarthritis[J]. Ann Intern Med, 2024, 177(9): ITC129-44.
|
3 |
Liew JW, King LK, Mahmoudian A, et al. A scoping review of how early-stage knee osteoarthritis has been defined[J]. Osteoarthritis Cartilage, 2023, 31(9): 1234-41.
|
4 |
Li XH, Zhang ZL, Liang WN, et al. Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation: in vivo and in vitro verification[J]. J Ethnopharmacol, 2020, 249: 112390.
|
5 |
Li X, Zhang Z, Liang W, et al. Data on Tougu Xiaotong capsules may inhibit p38 MAPK pathway-mediated inflammation in vitro [J]. Data Brief, 2019, 28: 105023.
|
6 |
Liao JH, Yu XB, Chen JQ, et al. Knowledge mapping of autophagy in osteoarthritis from 2004 to 2022: a bibliometric analysis[J]. Front Immunol, 2023, 14: 1063018.
|
7 |
Alles SRA, Smith PA. Peripheral voltage-gated cation channels in neuropathic pain and their potential as therapeutic targets[J]. Front Pain Res, 2021, 2: 750583.
|
8 |
Deng L, Dourado M, Reese RM, et al. Nav1.7 is essential for nociceptor action potentials in the mouse in a manner independent of endogenous opioids [J]. Neuron, 2023, 111(17): 2642-59.
|
9 |
Loya-López SI, Duran P, Ran DZ, et al. Cell specific regulation of NaV1.7 activity and trafficking in rat nodose Ganglia neurons[J]. Neurobiol Pain, 2022, 12: 100109.
|
10 |
Xue YP, Chidiac C, Herault Y, et al. Pain behavior in SCN9A (Nav1.7) and SCN10A (Nav1.8) mutant rodent models[J]. Neurosci Lett, 2021, 753: 135844.
|
11 |
Jami S, Deuis JR, Klasfauseweh T, et al. Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function[J]. Nat Commun, 2023, 14(1): 2442.
|
12 |
Sun LT, Xia RL, Jiang JW, et al. MicroRNA-96 is required to prevent allodynia by repressing voltage-gated sodium channels in spinal cord[J]. Prog Neurobiol, 2021, 202: 102024.
|
13 |
Fu WY, Vasylyev D, Bi YF, et al. Nav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis[J]. Nature, 2024, 625(7995): 557-65.
|
14 |
Hidaka K, Maruta T, Koshida T, et al. Extracellular signal-regulated kinase phosphorylation enhancement and NaV1.7 sodium channel upregulation in rat dorsal root Ganglia neurons contribute to resiniferatoxin-induced neuropathic pain: the efficacy and mechanism of pulsed radiofrequency therapy[J]. Mol Pain, 2022, 18: 17448069221089784.
|
15 |
Kamei T, Kudo T, Yamane H, et al. Unique electrophysiological property of a novel Nav1.7, Nav1.8, and Nav1.9 sodium channel blocker, ANP-230[J]. Biochem Biophys Res Commun, 2024, 721: 150126.
|
16 |
Yin JB, Liu HX, Dong QQ, et al. Correlative increasing expressions of KIF5b and Nav1.7 in DRG neurons of rats under neuropathic pain conditions[J]. Physiol Behav, 2023, 263: 114115.
|
17 |
朱海波, 何忠斌. 透骨消痛胶囊治疗骨质疏松性骨关节炎的临床疗效[J]. 内蒙古中医药, 2019, 38(8): 25-6.
|
18 |
Shi XQ, Jie LS, Wu P, et al. Calycosin mitigates chondrocyte inflammation and apoptosis by inhibiting the PI3K/AKT and NF-κB pathways[J]. J Ethnopharmacol, 2022, 297: 115536.
|
19 |
Liu DR, Mei W, Kang JF, et al. Casticin ameliorates osteoarthritic cartilage damage in rats through PI3K/AKT/HIF-1α signaling[J]. Chem Biol Interact, 2024, 391: 110897.
|
20 |
李孝栋, 张丽红, 肖晓金, 等. 透骨消痛胶囊质量标准的研究[J]. 福建中医药, 2012, 43(1): 57-9.
|
21 |
廖乃顺, 陈文列, 郑良朴, 等. 透骨消痛胶囊的急性毒性实验[J]. 福建中医药大学学报, 2012, 22(2): 54-7.
|
22 |
肖晓金, 包侠萍, 张丽红, 等. 透骨消痛胶囊在大鼠体内药代动力学初步研究[J]. 福建中医药大学学报, 2014, 24(2): 35-7, 42.
|
23 |
Li XH, Wu MX, Ye HZ, et al. Experimental study on the suppression of sodium nitroprussiate-induced chondrocyte apoptosis by Tougu Xiaotong Capsule[J]. Chin J Integr Med, 2011, 17(6): 436-43.
|
24 |
Sethi V, Qin L, Trocóniz IF, et al. Model-based assessment of the liver safety profile of acetaminophen to support its combination use with topical diclofenac in mild-to-moderate osteoarthritis pain[J]. Pain Ther, 2024, 13(1): 127-43.
|
25 |
Li TT, Guo MB, Zhang WL. Comparison of therapeutic effects of topical application of diclofenac sodium nanoparticles and conventional placebo on knee osteoarthritis[J]. Cell Mol Biol, 2022, 68(3): 171-8.
|
26 |
Ma YT, Dong YL, Wang B, et al. Dry needling on latent and active myofascial trigger points versus oral diclofenac in patients with knee osteoarthritis: a randomized controlled trial[J]. BMC Musculoskelet Disord, 2023, 24(1): 36.
|
27 |
Fu CL, Lin YM, Tu HS, et al. Mechanism of Tougu Xiaotong Capsules in delaying degeneration of osteoarthritis by regulating cholesterol metabolism in chondrocytes through lncRNA MALAT1[J]. China J Chin Mater Med, 2024, 49(7): 1785-92.
|
28 |
Wu GW, Zhang JH, Chen WL, et al. Tougu Xiaotong capsule exerts a therapeutic effect on knee osteoarthritis by regulating subchondral bone remodeling[J]. Mol Med Rep, 2019, 19(3): 1858-66.
|
29 |
Wu GW, Huang YM, Chen WL, et al. Tougu Xiaotong capsule exerts a therapeutic effect by improving knee meniscus in the early osteoarthritis rat model[J]. Exp Ther Med, 2020, 19(6): 3641-9.
|
30 |
Liang WN, Li XH, Hu L, et al. An in vitro validation of the therapeutic effects of Tougu Xiaotong capsule on tunicamycin-treated chondrocytes[J]. J Ethnopharmacol, 2019, 229: 215-21.
|
31 |
Hu QC, Williams SL, Palladino A, et al. Screening of MMP-13 inhibitors using a GelMA-alginate interpenetrating network hydrogel-based model mimicking cytokine-induced key features of osteoarthritis in vitro [J]. Polymers, 2024, 16(11): 1572.
|
32 |
Zhao QH, Lin LP, Guo YX, et al. Matrix metalloproteinase-13, NF-κB p65 and interleukin-1β are associated with the severity of knee osteoarthritis[J]. Exp Ther Med, 2020, 19(6): 3620-6.
|
33 |
Kumar P, Kumar S, Abhilasha A, et al. The role of matrix metalloproteinase 13 and vitamin D in osteoarthritis: a hospital-based observational study[J]. Cureus, 2023, 15(9): e45437.
|
34 |
Wang ZY, Shi WM, Wu LH, et al. TMF inhibits extracellular matrix degradation by regulating the C/EBPβ/ADAMTS5 signaling pathway in osteoarthritis[J]. Biomed Pharmacother, 2024, 174: 116501.
|
35 |
Wang Z, Efferth T, Hua X, et al. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: a systematic review[J]. Phytomedicine, 2022, 105: 154347.
|
36 |
Weng KD, Luo MJ, Dong DH. Elucidation of the mechanism by which a ADAMTS5 gene microRNA-binding site single nucleotide polymorphism affects the risk of osteoarthritis[J]. Genet Test Mol Biomarkers, 2020, 24(8): 467-77.
|
37 |
Chiang YF, Huang KC, Wang K, et al. Protective Effects of an Oligo-Fucoidan-Based Formula against Osteoarthritis Development via iNOS and COX-2 Suppression following Monosodium Iodoacetate Injection[J]. Mar Drugs, 2024, 22(5): 211.
|
38 |
Yu M, Park C, Son YB, et al. Time-dependent effect of eggshell membrane on monosodium-iodoacetate-induced osteoarthritis: early-stage inflammation control and late-stage cartilage protection[J]. Nutrients, 2024, 16(12): 1885.
|
39 |
Wang YH, Zhu LL, Li TL, et al. Imrecoxib: advances in pharmacology and therapeutics[J]. Drug Des Devel Ther, 2024, 18: 1711-25.
|
40 |
Hestehave S, Allen HN, Gomez K, et al. Small molecule targeting NaV1.7 via inhibition of CRMP2-Ubc9 interaction reduces pain-related outcomes in a rodent osteoarthritic model[J]. Pain, 2024. doi: 10.1097/j.pain.0000000000003357 .
|
41 |
Rahman W, Dickenson AH. Osteoarthritis-dependent changes in antinociceptive action of Nav1.7 and Nav1.8 sodium channel blockers: an in vivo electrophysiological study in the rat[J]. Neuroscience, 2015, 295: 103-16.
|