南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (3): 650-660.doi: 10.12122/j.issn.1673-4254.2025.03.23

• • 上一篇    

基于深度可分离卷积与注意力机制的单导联心房颤动轻量级分类网络

洪永(), 张鑫, 林铭俊, 吴秋岑, 陈超敏()   

  1. 南方医科大学生物医学工程学院,广东 广州 510515
  • 收稿日期:2024-12-04 出版日期:2025-03-20 发布日期:2025-03-28
  • 通讯作者: 陈超敏 E-mail:3547475276@qq.com;571611621@qq.com
  • 作者简介:洪 永,在读硕士研究生,E-mail: 3547475276@qq.com
  • 基金资助:
    国家重点研发计划(2023YFC2414500)

A lightweight classification network for single-lead atrial fibrillation based on depthwise separable convolution and attention mechanism

Yong HONG(), Xin ZHANG, Mingjun LIN, Qiucen WU, Chaomin CHEN()   

  1. College of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
  • Received:2024-12-04 Online:2025-03-20 Published:2025-03-28
  • Contact: Chaomin CHEN E-mail:3547475276@qq.com;571611621@qq.com

摘要:

目的 设计一个深度学习模型,实现模型复杂度和模型性能的平衡,以便于集成到可穿戴心电监护设备上,实现本地的房颤自动诊断。 方法 从公开数据集LTAFDB、AFDB和NSRDB上分别收集了84例、25例房颤患者和18例无明显心律失常受试者的数据进行实验和测试。提出了一个基于深度可分离卷积并融合通道空间信息的轻量级注意网络—DSC-AttNet,引入深度可分离卷积代替标准卷积,降低模型参数量和计算量,实现模型的高效和轻量化;并嵌入多层混合注意力机制以在不同尺度上计算通道信息和空间信息的注意权重,提高模型的特征表达能力。在LTAFDB上进行十折交叉验证,并在AFDB和NSRDB上进行外部独立测试。 结果 DSC-AttNet在测试集上的十折平均准确率达到97.33%,精确率达到97.30%,均优于其他4个对比模型以及3个经典模型。模型在外部测试集上的准确率分别达到92.78%和99.97%,优于3个经典模型。且DSC-AttNet的参数量为1.01M,计算量为27.19 G,小于3个经典模型。 结论 该房颤分类方法具有较小的复杂度,达到了更好的分类性能,并且泛化能力较好,具有良好的临床应用前景和推广能力。

关键词: 心电图, 心房颤动, 卷积块注意模块, MobileNet, 轻量级卷积神经网络

Abstract:

Objective To design a deep learning model that balances model complexity and performance to enable its integration into wearable ECG monitoring devices for automated diagnosis of atrial fibrillation. Methods This study was performed based on data from 84 patients with atrial fibrillation, 25 patients with atrial fibrillation, and 18 subjects without obvious arrhythmia collected from the publicly available datasets LTAFDB, AFDB, and NSRDB, respectively. A lightweight attention network based on depthwise separable convolution and fusion of channel-spatial information, namely DSC-AttNet, was proposed. Depthwise separable convolution was introduced to replace standard convolution and reduce model parameters and computational complexity to realize high efficiency and light weight of the model. The multilayer hybrid attention mechanism was embedded to compute the attentional weights of the channels and spatial information at different scales to improve the feature expression ability of the model. Ten-fold cross-validation was performed on LTAFDB, and external independent testing was conducted on AFDB and NSRDB datasets. Results DSC-AttNet achieved a ten-fold average accuracy of 97.33% and a precision of 97.30% on the test set, both of which outperformed the other 4 comparison models as well as the 3 classical models. The accuracy of the model on the external test set reached 92.78%, better than those of the 3 classical models. The number of parameters of DSC-AttNet was 1.01M, and the computational volume was 27.19G, both smaller than the 3 classical models. Conclusion This proposed method has a smaller complexity, achieves better classification performance, and has a better generalization ability for atrial fibrillation classification.

Key words: electrocardiogram, atrial fibrillation, convolutional block attention module, MobileNet, lightweight convolutional neural network