| [1] |
Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer[J]. Lancet, 2020, 396(10251): 635-48. doi:10.1016/s0140-6736(20)31288-5
|
| [2] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-63. doi:10.3322/caac.21834
|
| [3] |
Li Y, Feng A, Zheng S, et al. Recent estimates and predictions of 5-year survival in patients with gastric cancer: a model-based period analysis[J]. Cancer Control, 2022, 29: 10732748221099227. doi:10.1177/10732748221099227
|
| [4] |
Guan WL, He Y, Xu RH. Gastric cancer treatment: recent progress and future perspectives[J]. J Hematol Oncol, 2023, 16(1): 57. doi:10.1186/s13045-023-01451-3
|
| [5] |
Yang WJ, Zhao HP, Yu Y, et al. Updates on global epidemiology, risk and prognostic factors of gastric cancer[J]. World J Gastroenterol, 2023, 29(16): 2452-68. doi:10.3748/wjg.v29.i16.2452
|
| [6] |
Zeng YJ, Jin RU. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer[J]. Semin Cancer Biol, 2022, 86: 566-82. doi:10.1016/j.semcancer.2021.12.004
|
| [7] |
Hou W, Zhao Y, Zhu H. Predictive biomarkers for immunotherapy in gastric cancer: current status and emerging prospects[J]. Int J Mol Sci, 2023, 24(20): 15321. doi:10.3390/ijms242015321
|
| [8] |
Röcken C. Predictive biomarkers in gastric cancer[J]. J Cancer Res Clin Oncol, 2023, 149(1): 467-81. doi:10.1007/s00432-022-04408-0
|
| [9] |
Matsuoka T, Yashiro M. Bioinformatics analysis and validation of potential markers associated with prediction and prognosis of gastric cancer[J]. Int J Mol Sci, 2024, 25(11): 5880. doi:10.3390/ijms25115880
|
| [10] |
Zhao XH, Li K, Chen MY, et al. Metabolic codependencies in the tumor microenvironment and gastric cancer: Difficulties and opportunities[J]. Biomed Pharmacother, 2023,162:114601. doi:10.1016/j.biopha.2023.114601
|
| [11] |
Fendt SM. 100 years of the Warburg effect: a cancer metabolism endeavor[J]. Cell, 2024, 187(15): 3824-8. doi:10.1016/j.cell.2024.06.026
|
| [12] |
Li Y, Ma H. circRNA PLOD2 promotes tumorigenesis and Warburg effect in colon cancer by the miR-513a-5p/SIX1/LDHA axis[J]. Cell Cycle, 2022, 21(23): 2484-98. doi:10.1080/15384101.2022.2103339
|
| [13] |
Shang S, Wang MZ, Xing Z, et al. Lactate regulators contribute to tumor microenvironment and predict prognosis in lung adenocarcinoma[J]. Front Immunol, 2022, 13: 1024925. doi:10.3389/fimmu.2022.1024925
|
| [14] |
侯鑫睿, 张振东, 曹明远,等. 红景天苷靶向miR-1343-3p-OGDHL/PDHB糖代谢轴抑制胃癌细胞的体内外增殖[J]. 南方医科大学学报, 2025, 45(6): 1226-39.
|
| [15] |
Bai R, Wan R, Yan C, et al. Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation[J]. Science, 2018, 360(6396): 1423-9. doi:10.1126/science.aau0325
|
| [16] |
Sun CF. The SF3b complex: splicing and beyond[J]. Cell Mol Life Sci, 2020, 77(18): 3583-95. doi:10.1007/s00018-020-03493-z
|
| [17] |
Wan R, Bai R, Zhan X, et al. How is precursor messenger RNA spliced by the spliceosome?[J]. Annu Rev Biochem, 2020, 89: 333-58. doi:10.1146/annurev-biochem-013118-111024
|
| [18] |
Gökmen-Polar Y, Neelamraju Y, Goswami CP, et al. Expression levels of SF3B3 correlate with prognosis and endocrine resistance in estrogen receptor-positive breast cancer[J]. Mod Pathol, 2015, 28(5): 677-85. doi:10.1038/modpathol.2014.146
|
| [19] |
Lin YH, Wu MH, Liu YC, et al. LINC01348 suppresses hepatocellular carcinoma metastasis through inhibition of SF3B3-mediated EZH2 pre-mRNA splicing[J]. Oncogene, 2021, 40(28): 4675-85. doi:10.1038/s41388-021-01905-3
|
| [20] |
Zhang S, Zhang J, An Y, et al. Multi-omics approaches identify SF3B3 and SIRT3 as candidate autophagic regulators and druggable targets in invasive breast carcinoma[J]. Acta Pharm Sin B, 2021, 11(5): 1227-45. doi:10.1016/j.apsb.2020.12.013
|
| [21] |
Chen K, Xiao H, Zeng J, et al. Correction: alternative splicing of EZH2 pre-mRNA by SF3B3 contributes to the tumorigenic potential of renal cancer[J]. Clin Cancer Res, 2022, 28(8): 1736. doi:10.1158/1078-0432.ccr-22-0563
|
| [22] |
Xu T, Li XC, Zhao WN, et al. SF3B3-regulated mTOR alternative splicing promotes colorectal cancer progression and metastasis[J]. J Exp Clin Cancer Res, 2024, 43(1): 126. doi:10.1186/s13046-024-03053-4
|
| [23] |
杨晶晶, 殷丽霞, 段 婷, 等. 胃癌组织中高表达ATP5A1与患者术后的不良预后和肿瘤细胞的糖代谢有关[J]. 南方医科大学学报, 2024,44(5): 974-80.
|
| [24] |
Shen W, Song Z, Zhong X, et al. Sangerbox: a comprehensive, interaction-friendly clinical bioinformatics analysis platform[J]. Imeta, 2022, 1(3): e36. doi:10.1002/imt2.36
|
| [25] |
张 震, 鲁 辉, 陈孝华, 等. CEP192过表达可作为胃癌患者不良预后的生物标志物并通过调控G2/M期关键蛋白的表达影响肿瘤细胞恶性增殖[J]. 南方医科大学学报, 2024, 44(11): 2137-45.
|
| [26] |
Zhao X, Zhao F, Yan L, et al. Long non-coding ribonucleic acid SNHG18 induced human granulosa cell apoptosis via disruption of glycolysis in ovarian aging[J]. J Ovarian Res, 2024, 17(1): 185. doi:10.1186/s13048-024-01510-4
|
| [27] |
Chen CQ, Huang F, Li XJ, et al. Identification of splicing factors signature predicting prognosis risk and the mechanistic roles of novel oncogenes in HNSCC[J]. Biochim Biophys Acta Mol Basis Dis, 2024,1870(4):167115. doi:10.1016/j.bbadis.2024.167115
|
| [28] |
Zhong XY, He XF, Wang YX, et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications[J]. J Hematol Oncol, 2022, 15(1): 160. doi:10.1186/s13045-022-01358-5
|
| [29] |
Wang YH, Patti GJ. The Warburg effect: a signature of mitochondrial overload[J]. Trends Cell Biol, 2023, 33(12): 1014-20. doi:10.1016/j.tcb.2023.03.013
|
| [30] |
Liao MR, Yao DH, Wu LF, et al. Targeting the Warburg effect: a revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer[J]. Acta Pharm Sin B, 2024, 14(3): 953-1008. doi:10.1016/j.apsb.2023.12.003
|