1 |
Mills KT, Bundy JD, Kelly TN, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries[J]. Circulation, 2016, 134(6): 441-50.
|
2 |
Wang ZW, Chen Z, Zhang LF, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015[J]. Circulation, 2018, 137(22): 2344-56.
|
3 |
India State-Level Disease Burden Initiative Collaborators. Nations within a nation: variations in epidemiological transition across the states of India, 1990-2016 in the Global Burden of Disease Study[J]. Lancet, 2017, 390(10111): 2437-60.
|
4 |
Ruan Z, Lu Q, Wang JE, et al. MIF promotes neurodegeneration and cell death via its nuclease activity following traumatic brain injury[J]. Cell Mol Life Sci, 2021, 79(1): 39.
|
5 |
Srinivasan S, Treacy R, Herrero T, et al. Discovery and verification of extracellular miRNA biomarkers for non-invasive prediction of pre-eclampsia in asymptomatic women[J]. Cell Rep Med, 2020, 1(2): 100013.
|
6 |
Sotomayor-Flores C, Rivera-Mejías P, Vásquez-Trincado C, et al. Angiotensin‑(1-9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway[J]. Cell Death Differ, 2020, 27(9): 2586-604.
|
7 |
Mishima T, Mizuguchi Y, Kawahigashi Y, et al. RT-PCR-based analysis of microRNA (miR-1 and-124) expression in mouse CNS[J]. Brain Res, 2007, 1131(1): 37-43.
|
8 |
Geng JQ, Feng JP, Ke FZ, et al. MicroRNA-124 negatively regulates STAT3 to alleviate hypoxic-ischemic brain damage by inhibiting oxidative stress[J]. Aging, 2024, 16(3): 2828-47.
|
9 |
Angelopoulou E, Paudel YN, Piperi C. MiR-124 and Parkinson's disease: a biomarker with therapeutic potential[J]. Pharmacol Res, 2019, 150: 104515.
|
10 |
Sun H, Li JJ, Feng ZR, et al. MicroRNA-124 regulates cell pyroptosis during cerebral ischemia-reperfusion injury by regulating STAT3[J]. Exp Ther Med, 2020, 20(6): 227.
|
11 |
陈晓萍, 程 瑛, 刘慧馨, 等. 基于代谢组学研究清达颗粒减轻高血压所致心脏损伤的生物学机制[J]. 中国中医基础医学杂志, 2023, 29(1): 79-85, 182.
|
12 |
Qu H, Shen AL, Yang K, et al. Efficacy and safety of Qingda Granule versus valsartan capsule in Chinese grade 1 hypertensive patients with low-moderate risk: a randomized, double-blind, double dummy, non-inferiority, multi-center trial[J]. Pharmacol Res, 2024, 200: 107052.
|
13 |
Wu XY, Shen AL, Bao LY, et al. Qingda granules attenuate hypertensive cardiac remodeling and inflammation in spontaneously hypertensive rats[J]. Biomed Pharmacother, 2020, 129: 110367.
|
14 |
Wu MZ, Zhang SY, Zhang WQ, et al. Qingda granule ameliorates vascular remodeling and phenotypic transformation of adventitial fibroblasts via suppressing the TGF‑β1/Smad2/3 pathway[J]. J Ethnopharmacol, 2023, 313: 116535.
|
15 |
Chen XP, Long LZ, Cheng Y, et al. Qingda granule attenuates cardiac fibrosis via suppression of the TGF‑β1/Smad2/3 signaling pathway in vitro and in vivo [J]. Biomed Pharmacother, 2021, 137: 111318.
|
16 |
Chen DX, Long LZ, Lin S, et al. Qingda granule alleviate angiotensin ⅱ-induced hypertensive renal injury by suppressing oxidative stress and inflammation through NOX1 and NF‑κB pathways[J]. Biomed Pharmacother, 2022, 153: 113407.
|
17 |
Zhang L, Cai QY, Lin S, et al. Qingda granule exerts neuroprotective effects against ischemia/reperfusion-induced cerebral injury via lncRNA GAS5/miR-137 signaling pathway[J]. Int J Med Sci, 2021, 18(7): 1687-98.
|
18 |
叶任之, 张 铃, 蔡巧燕, 等. 基于p38MAPK/Nrf2/HO-1通路探讨清达颗粒对脂多糖诱导活化的小胶质细胞抗氧化作用研究[J]. 中西医结合心脑血管病杂志, 2020, 18(11): 1700-6.
|
19 |
Cai QY, Zhao CY, Xu YY, et al. Qingda granule alleviates cerebral ischemia/reperfusion injury by inhibiting TLR4/NF‑κB/NLRP3 signaling in microglia[J]. J Ethnopharmacol, 2024, 324: 117712.
|
20 |
Kelly DM, Rothwell PM. Blood pressure and the brain: the neurology of hypertension[J]. Pract Neurol, 2020, 20(2): 100-8.
|
21 |
Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies[J]. Lancet, 2002, 360(9349): 1903-13.
|
22 |
Li J. Traditional Chinese medicine in treating hypertension[J]. Circ Cardiovasc Qual Outcomes, 2022, 15(3): e008723.
|
23 |
Wang MX, Wu CJ, Cao PH, et al. Meta-analysis for clinical efficacy of traditional Chinese medicine in treating resistant hypertension[J]. Chin J Chin Mater Med, 2021, 46(3): 685-93.
|
24 |
Cheng Y, Shen AL, Wu XY, et al. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway[J]. Biomedecine Pharmacother, 2021, 133: 111022.
|
25 |
Tajima A, Hans FJ, Livingstone D, et al. Smaller local brain volumes and cerebral atrophy in spontaneously hypertensive rats[J]. Hypertension, 1993, 21(1): 105-11.
|
26 |
Pires PW, Dams Ramos CM, Matin N, et al. The effects of hypertension on the cerebral circulation[J]. Am J Physiol Heart Circ Physiol, 2013, 304(12): H1598-614.
|
27 |
Hsieh MH, Cui ZY, Yang AL, et al. Cerebral cortex apoptosis in early aged hypertension: effects of epigallocatechin-3-gallate[J]. Front Aging Neurosci, 2021, 13: 705304.
|
28 |
Yang LJ, Cui H, Cao T. Negative regulation of miRNA-9 on oligodendrocyte lineage gene 1 during hypoxic-ischemic brain damage[J]. Neural Regen Res, 2014, 9(5): 513-8.
|
29 |
Vinciguerra A, Formisano L, Cerullo P, et al. MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits[J]. Mol Ther, 2014, 22(10): 1829-38.
|
30 |
耿佳庆, 方成志, 张丙宏. MicroRNA-124在神经系统中的研究进展[J]. 武汉大学学报(医学版), 2024, 45(11): 1403-9.
|
31 |
职 瑾, 段 斌, 王 静, 等. MiR-124与MAPK/ERK通路对调节脑梗死大鼠神经细胞凋亡的影响[J]. 现代生物医学进展, 2021, 21(12): 2235-40.
|
32 |
Matsuoka H, Tamura A, Kinehara M, et al. Levels of tight junction protein CLDND1 are regulated by microRNA-124 in the cerebellum of stroke-prone spontaneously hypertensive rats[J]. Biochem Biophys Res Commun, 2018, 498(4): 817-23.
|
33 |
Shu K, Zhang YL. Protodioscin protects PC12 cells against oxygen and glucose deprivation-induced injury through miR-124/AKT/Nrf2 pathway[J]. Cell Stress Chaperones, 2019, 24(6): 1091-9.
|
34 |
Fathi N, Rashidi G, Khodadadi A, et al. STAT3 and apoptosis challenges in cancer[J]. Int J Biol Macromol, 2018, 117: 993-1001.
|
35 |
You LK, Wang ZG, Li HS, et al. The role of STAT3 in autophagy[J]. Autophagy, 2015, 11(5): 729-39.
|
36 |
Xia TT, Zhang M, Lei W, et al. Advances in the role of STAT3 in macrophage polarization[J]. Front Immunol, 2023, 14: 1160719.
|
37 |
Hristova M, Rocha-Ferreira E, Fontana X, et al. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage[J]. J Neurochem, 2016, 136(5): 981-94.
|
38 |
Tang SJ, Lai NS, Xu L. Neuronal pyroptosis mediated by STAT3 in early brain injury after subarachnoid hemorrhage[J]. Brain Res, 2024, 1822: 148666.
|
39 |
Wei J, Wang F, Kong LY, et al. MiR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma[J]. Cancer Res, 2013, 73(13): 3913-26.
|
40 |
龚翠兰, 马 强, 杨仁义, 等. 基于JAK2/STAT3通路探讨活血荣络方对OGD/R后BMEC的干预作用及机制[J]. 湖南中医药大学学报, 2024, 44(3): 350-6.
|
41 |
弋海群, 谢 娟, 张象霞, 等. 蛇葡萄素通过调节JAK2/STAT3信号通路减轻OGD/R诱导的神经元损伤[J]. 国际检验医学杂志, 2024, 45(1): 89-94.
|