| 1 | Javanian M, Barary M, Ghebrehewet S, et al. A brief review of influenza virus infection[J]. J Med Virol, 2021, 93(8): 4638-46. | 
																													
																						| 2 | Du J, Li H, Lian J, et al. Stem cell therapy: a potential approach for treatment of influenza virus and coronavirus-induced acute lung injury[J]. Stem Cell Res Ther, 2020, 11(1): 192. | 
																													
																						| 3 | Ma N, Li XJ, Jiang HY, et al. Influenza virus neuraminidase engages CD83 and promotes pulmonary injury[J]. J Virol, 2021, 95(3): e01753-20. | 
																													
																						| 4 | Pan H, Huang WH, Wang ZJ, et al. The ACE2-ang-(1-7)-mas axis modulates M1/M2 macrophage polarization to relieve CLP-induced inflammation via TLR4-mediated NF-кb and MAPK pathways[J]. J Inflamm Res, 2021, 14: 2045-60. | 
																													
																						| 5 | Liu XF, Shao JH, Liao YT, et al. Regulation of short-chain fatty acids in the immune system[J]. Front Immunol, 2023, 14: 1186892. | 
																													
																						| 6 | Weng SC, Wen MC, Hsieh SL, et al. Decoy receptor 3 suppresses T-cell priming and promotes apoptosis of effector T-cells in acute cell-mediated rejection: the role of reverse signaling[J]. Front Immunol, 2022, 13: 879648. | 
																													
																						| 7 | Xiao YS, Ren Q, Wu LH. The pharmacokinetic property and pharmacological activity of acteoside: a review[J]. Biomed Pharmacother, 2022, 153: 113296. | 
																													
																						| 8 | Jiang HL, Ashraf GM, Liu MM, et al. Tilianin ameliorates cognitive dysfunction and neuronal damage in rats with vascular dementia via p-CaMKII/ERK/CREB and ox-CaMKII-dependent MAPK/NF-κB pathways[J]. Oxid Med Cell Longev, 2021, 2021: 6673967. | 
																													
																						| 9 | Li QT, Feng YM, Ke ZH, et al. KCNN4 promotes invasion and metastasis through the MAPK/ERK pathway in hepatocellular carcinoma[J]. J Investig Med, 2020, 68(1): 68-74. | 
																													
																						| 10 | Kulaphisit M, Pomlok K, Saenjum C, et al. The anti-leukemic activity of a luteolin-apigenin enriched fraction from an edible and ethnomedicinal plant, Elsholtzia stachyodes, is exerted through an ER stress/autophagy/cell cycle arrest/apoptotic cell death signaling axis[J]. Biomed Pharmacother, 2023, 160: 114375. | 
																													
																						| 11 | Yang LY, Du JC, Li RT, et al. Bodiniosides S-Y, seven new triterpenoid saponins from Elsholtzia bodinieri and their anti-influenza activities[J]. Molecules, 2021, 26(21): 6535. | 
																													
																						| 12 | Ling HY, Lou YJ. Total flavones from Elsholtzia blanda reduce infarct size during acute myocardial ischemia by inhibiting myocardial apoptosis in rats[J]. J Ethnopharmacol, 2005, 101(1-3): 169-75. | 
																													
																						| 13 | 周雪倩. 几种唇形科清热解毒药用植物的化学成分和抗流感活性研究[D]. 昆明: 昆明理工大学, 2022. | 
																													
																						| 14 | Kim SY, Hassan AHE, Chung KS, et al. Mosloflavone-resveratrol hybrid TMS-HDMF-5z exhibits potent in vitro and in vivo anti-inflammatory effects through NF‑κB, AP-1, and JAK/STAT inactivation[J]. Front Pharmacol, 2022, 13: 857789. | 
																													
																						| 15 | Cai W, Zhang SL. Anti-inflammatory mechanisms of total flavonoids from Mosla scabra against influenza A virus-induced pneumonia by integrating network pharmacology and experimental verification[J]. Evid Based Complement Alternat Med, 2022, 2022: 2154485. | 
																													
																						| 16 | Chen X, Li JB, Kang R, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9): 2054-81. | 
																													
																						| 17 | 陈海永, 周长新, 楼宜嘉, 等. 四方蒿化学成分的研究[J]. 中国中药杂志, 2005, 30(20): 1589-91. DOI: 10.3321/j.issn:1001-5302.2005.20.008 | 
																													
																						| 18 | Yang Y, Wang Y, Guo L, et al. Interaction between macrophages and ferroptosis[J]. Cell Death Dis, 2022, 13(4): 355. | 
																													
																						| 19 | Pan WX, Xiang L, Liang XH, et al. Vitronectin destroyed intestinal epithelial cell differentiation through activation of PDE4-mediated ferroptosis in inflammatory bowel disease[J]. Mediators Inflamm, 2023, 2023: 6623329. | 
																													
																						| 20 | Gao WT, Wang XY, Zhou Y, et al. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy[J]. Signal Transduct Target Ther, 2022, 7(1): 196. | 
																													
																						| 21 | Liu PF, Feng YT, Li HW, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis[J]. Cell Mol Biol Lett, 2020, 25: 10. | 
																													
																						| 22 | Dong X, Li DD, Fang ZY, et al. Astaxanthin alleviates lipopolysaccharide-induced acute lung injury by suppressing ferroptosis[J]. Food Funct, 2023, 14(13): 6115-27. | 
																													
																						| 23 | Li JC, Lu KM, Sun FL, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]. J Transl Med, 2021, 19(1): 96. | 
																													
																						| 24 | Lv YW, Du Y, Ma SS, et al. Proanthocyanidins attenuates ferroptosis against influenza-induced acute lung injury in mice by reducing IFN-Γ[J]. Life Sci, 2023, 314: 121279. | 
																													
																						| 25 | Li Y, Yang Y, Yang YF. Multifaceted roles of ferroptosis in lung diseases[J]. Front Mol Biosci, 2022, 9: 919187. | 
																													
																						| 26 | Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis[J]. Free Radic Biol Med, 2019, 133: 130-43. | 
																													
																						| 27 | Xie DD, Li K, Feng RX, et al. Ferroptosis and traditional Chinese medicine for type 2 diabetes mellitus[J]. Diabetes Metab Syndr Obes, 2023, 16: 1915-30. | 
																													
																						| 28 | Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis[J]. Proteomics, 2019, 19(18): e1800311. | 
																													
																						| 29 | Huang SM, Le HB, Hong GB, et al. An all-in-one biomimetic iron-small interfering RNA nanoplatform induces ferroptosis for cancer therapy[J]. Acta Biomater, 2022, 148: 244-57. | 
																													
																						| 30 | Jorge J, Neves J, Alves R, et al. Parthenolide induces ROS-mediated apoptosis in lymphoid malignancies[J]. Int J Mol Sci, 2023, 24(11): 9167. | 
																													
																						| 31 | Braithwaite AT, Marriott HM, Lawrie A. Divergent roles for TRAIL in lung diseases[J]. Front Med, 2018, 5: 212. | 
																													
																						| 32 | Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma[J]. Immunity, 2019, 50(4): 975-91. | 
																													
																						| 33 | Boonpiyathad T, Sözener ZC, Satitsuksanoa P, et al. Immunologic mechanisms in asthma[J]. Semin Immunol, 2019, 46: 101333. | 
																													
																						| 34 | Sano M, Fukuda K, Sato T, et al. ERK and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts[J]. Circ Res, 2001, 89(8): 661-9. | 
																													
																						| 35 | Ramalingam P, Poulos MG, Lazzari E, et al. Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF[J]. Nat Commun, 2020, 11(1): 666. | 
																													
																						| 36 | Li T, Wu YN, Wang H, et al. Dapk1 improves inflammation, oxidative stress and autophagy in LPS-induced acute lung injury via p38MAPK/NF-κB signaling pathway[J]. Mol Immunol, 2020, 120: 13-22. | 
																													
																						| 37 | Feng Y, Fang ZC, Liu BY, et al. p38MAPK plays a pivotal role in the development of acute respiratory distress syndrome[J]. Clinics, 2019, 74: e509. | 
																													
																						| 38 | Cui SQ, Nian Q, Chen G, et al. Ghrelin ameliorates A549 cell apoptosis caused by paraquat via p38-MAPK regulated mitochondrial apoptotic pathway[J]. Toxicology, 2019, 426: 152267. |