南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (5): 913-919.doi: 10.12122/j.issn.1673-4254.2024.05.13
夏勇生1,2(), 王炼1,2, 陈孝华1,2, 张雨路3, 孙奥飞3, 陈德利1(
)
收稿日期:
2024-01-23
出版日期:
2024-05-20
发布日期:
2024-06-06
通讯作者:
陈德利
E-mail:xiayongsheng0818@163.com;13965295950@139.com
作者简介:
夏勇生,在读硕士研究生,E-mail: xiayongsheng0818@163.com
基金资助:
Yongsheng XIA1,2(), Lian WANG1,2, Xiaohua CHEN1,2, Yulu ZHANG3, Aofei SUN3, Deli CHEN1(
)
Received:
2024-01-23
Online:
2024-05-20
Published:
2024-06-06
Contact:
Deli CHEN
E-mail:xiayongsheng0818@163.com;13965295950@139.com
摘要:
目的 探讨TSR2核糖体成熟因子在胃癌中的表达情况及其与胃癌恶性演进的相关性,并分析其潜在的作用机制。 方法 纳入105例胃癌患者资料,分析TSR2在胃癌组织中表达水平及其对胃癌恶性进展、术后5年生存率的影响;GO及KEGG富集分析预测TSR2的生物学功能及可能的作用机制;通过慢病毒转染技术上调和下调TSR2在胃癌细胞系(MGC-803)的表达水平,并采用CCK-8、Transwell评估其对MGC-803细胞增殖、侵袭及迁移的影响;Western blot检测p-PI3K、p-AKT表达。 结果 TSR2在胃癌组织的表达水平显著低于癌旁组织(P<0.001),且TSR2的表达水平与CEA、CA19-9、T分期及N分期相关(P<0.05)。单因素联合多因素分析显示,TSR2低表达(P=0.020)、CEA≥5 μg/L(P=0.021)、CA19-9≥37 kU/L(P=0.001)、T3~T4分期(P=0.039)和N2~N3分期(P=0.027)是独立影响胃癌患者施行根治术后5年生存率的风险因子。生存分析结果显示,TSR2表达水平与胃癌患者术后5年生存率呈正相关(P<0.001)。生物信息学富集分析预测TSR2的功能可能与PI3K/AKT信号通路相关。CCK-8和Transwell实验结果显示,上调TSR2可抑制胃癌细胞的增殖、迁移和侵袭(P<0.05),下调则反之(P<0.05)。Western blot结果显示过表达TSR2可下调胃癌细胞中磷脂肌醇3激酶(PI3K)和蛋白激酶B(AKT)的磷酸化,敲低则反之(P<0.05)。 结论 TSR2在胃癌组织中低表达并影响患者预后,其可能与下调PI3K/AKT信号通路抑制胃癌细胞的增殖、侵袭与迁移有关。
夏勇生, 王炼, 陈孝华, 张雨路, 孙奥飞, 陈德利. 过表达TSR2通过下调PI3K/AKT信号通路抑制胃癌细胞的增殖和侵袭[J]. 南方医科大学学报, 2024, 44(5): 913-919.
Yongsheng XIA, Lian WANG, Xiaohua CHEN, Yulu ZHANG, Aofei SUN, Deli CHEN. TSR2 overexpression inhibits proliferation and invasion of gastric cancer cells by downregulating the PI3K/AKT signaling pathway[J]. Journal of Southern Medical University, 2024, 44(5): 913-919.
图1 TSR2在胃癌及癌旁组织中的表达情况
Fig.1 Expression of TSR2 in gastric cancer and adjacent tissues. A: TSR2 is lowly expressed in gastric cancer tissue. B: TSR2 is highly expressed in adjacent tissue. C: Relative IOD value of TSR2 (n=105). *P<0.05 vs adjacent tissues.
Factors | n | TSR2 expression | χ 2 | P | |
---|---|---|---|---|---|
Low (n=53) | High (n=52) | ||||
Gender | 0.023 | 0.880 | |||
Male | 74 | 37 (50.0%) | 37 (50.0%) | ||
Female | 31 | 16 (51.6%) | 15 (48.4%) | ||
Age (year) | 0.015 | 0.903 | |||
<60 | 41 | 21 (51.2%) | 20 (48.8%) | ||
≥60 | 64 | 32 (50.0%) | 32 (50.0%) | ||
CEA (μg/L) | 6.940 | 0.008 | |||
<5 | 49 | 18 (36.7%) | 31 (63.3%) | ||
≥5 | 56 | 35 (62.5%) | 21 (37.5%) | ||
CA19-9 (kU/L) | 17.720 | <0.001 | |||
<37 | 47 | 13 (27.7%) | 34 (72.3%) | ||
≥37 | 58 | 40 (69.0%) | 18 (31.0%) | ||
Tumor size (cm) | 2.134 | 0.144 | |||
<5 | 49 | 21 (42.9%) | 28 (57.1%) | ||
≥5 | 56 | 32 (57.1%) | 24 (42.9%) | ||
Histological type | 1.177 | 0.278 | |||
Adenocarcinoma | 66 | 36 (54.5%) | 30 (45.5%) | ||
Other | 39 | 17 (43.6%) | 22 (56.4%) | ||
T stage | 11.675 | 0.001 | |||
1-2 | 53 | 18 (34.0%) | 35 (66.0%) | ||
3-4 | 52 | 35 (67.3%) | 17 (32.7%) | ||
N stage | 13.414 | <0.001 | |||
0-1 | 60 | 21 (35.0%) | 39 (65.0%) | ||
2-3 | 45 | 32 (71.1%) | 13 (28.9%) |
表1 胃癌组织中TSR2的表达量与恶性进展参数的关系
Tab.1 Correlation between TSR2 expression and progression of gastric cancer [n (%)]
Factors | n | TSR2 expression | χ 2 | P | |
---|---|---|---|---|---|
Low (n=53) | High (n=52) | ||||
Gender | 0.023 | 0.880 | |||
Male | 74 | 37 (50.0%) | 37 (50.0%) | ||
Female | 31 | 16 (51.6%) | 15 (48.4%) | ||
Age (year) | 0.015 | 0.903 | |||
<60 | 41 | 21 (51.2%) | 20 (48.8%) | ||
≥60 | 64 | 32 (50.0%) | 32 (50.0%) | ||
CEA (μg/L) | 6.940 | 0.008 | |||
<5 | 49 | 18 (36.7%) | 31 (63.3%) | ||
≥5 | 56 | 35 (62.5%) | 21 (37.5%) | ||
CA19-9 (kU/L) | 17.720 | <0.001 | |||
<37 | 47 | 13 (27.7%) | 34 (72.3%) | ||
≥37 | 58 | 40 (69.0%) | 18 (31.0%) | ||
Tumor size (cm) | 2.134 | 0.144 | |||
<5 | 49 | 21 (42.9%) | 28 (57.1%) | ||
≥5 | 56 | 32 (57.1%) | 24 (42.9%) | ||
Histological type | 1.177 | 0.278 | |||
Adenocarcinoma | 66 | 36 (54.5%) | 30 (45.5%) | ||
Other | 39 | 17 (43.6%) | 22 (56.4%) | ||
T stage | 11.675 | 0.001 | |||
1-2 | 53 | 18 (34.0%) | 35 (66.0%) | ||
3-4 | 52 | 35 (67.3%) | 17 (32.7%) | ||
N stage | 13.414 | <0.001 | |||
0-1 | 60 | 21 (35.0%) | 39 (65.0%) | ||
2-3 | 45 | 32 (71.1%) | 13 (28.9%) |
Characteristic | Univariate analysis | Multivariate analysis | |||
---|---|---|---|---|---|
Log rank χ2 | P | HR | 95% CI | P | |
Gender (male vs female) | 1.451 | 0.228 | - | - | - |
Age (≥60 years vs <60 years) | 1.356 | 0.244 | - | - | - |
TSR2 expression (low vs high) | 31.840 | <0.001 | 0.418 | 0.201-0.871 | 0.020 |
CEA (≥5μg/L vs <5 μg/L) | 18.367 | <0.001 | 2.173 | 1.126-4.192 | 0.021 |
CA19-9 (≥37 kU/L vs <37 kU/L) | 25.491 | <0.001 | 3.144 | 1.559-6.342 | 0.001 |
Tumor size (≥5 cm vs <5 cm) | 2.163 | 0.141 | - | - | - |
Histological type(adenocarcinoma vs other) | 0.001 | 0.982 | - | - | - |
T stage (T3-T4vs T1-T2) | 21.658 | <0.001 | 1.991 | 1.034-3.832 | 0.039 |
N stage (N2-N3vs N0-N1) | 26.362 | <0.001 | 2.106 | 1.090-4.066 | 0.027 |
表2 影响胃癌患者预后的危险因素
Tab.2 Risk factors affecting prognosis of patients with gastric cancer
Characteristic | Univariate analysis | Multivariate analysis | |||
---|---|---|---|---|---|
Log rank χ2 | P | HR | 95% CI | P | |
Gender (male vs female) | 1.451 | 0.228 | - | - | - |
Age (≥60 years vs <60 years) | 1.356 | 0.244 | - | - | - |
TSR2 expression (low vs high) | 31.840 | <0.001 | 0.418 | 0.201-0.871 | 0.020 |
CEA (≥5μg/L vs <5 μg/L) | 18.367 | <0.001 | 2.173 | 1.126-4.192 | 0.021 |
CA19-9 (≥37 kU/L vs <37 kU/L) | 25.491 | <0.001 | 3.144 | 1.559-6.342 | 0.001 |
Tumor size (≥5 cm vs <5 cm) | 2.163 | 0.141 | - | - | - |
Histological type(adenocarcinoma vs other) | 0.001 | 0.982 | - | - | - |
T stage (T3-T4vs T1-T2) | 21.658 | <0.001 | 1.991 | 1.034-3.832 | 0.039 |
N stage (N2-N3vs N0-N1) | 26.362 | <0.001 | 2.106 | 1.090-4.066 | 0.027 |
图2 胃癌组织中TSR2表达水平对患者术后5年生存率的影响
Fig.2 Influence of TSR2 expression level in gastric cancer tissue on 5-year survival rate of the patients after surgery.
图3 TSR2的KEGG和GO富集分析
Fig.3 KEGG and GO enrichment analysis of TSR2. A: KEGG analysis of TSR2 in gastric cancer. B: GO analysis of TSR2 in gastric cancer.
图4 TSR2对MGC-803细胞增殖能力的影响
Fig.4 Effect of TSR2 overexpression and knockdown on proliferation of MGC-803 cells. A, B: Lentivirus-mediated TSR2 overexpression and knockdown in MGC803 cells. C: TSR2 overexpression inhibits proliferation of gastric cancer cells (n=3). LV: Overexpression; Si: SiRNA. *P<0.05 vs Control.
图5 TSR2对MGC-803细胞迁移和侵袭能力的影响
Fig.5 Effects of TSR2 overexpression and knockdown on migration (A) and invasion (B) of MGC-803 cells detected by Transwell assay (n=3). *P<0.05 vs Control.
图6 TSR2调控MGC-803细胞中的PI3K/AKT信号通路
Fig.6 Western blotting for assessing the effect of TSR2 overexpression and knockdown on expression of p-PI3K and p-AKT in MGC803 cells (n=3). *P<0.05 vs Control.
1 | Mülder DT, Hahn AI, Huang RJ, et al. Prevalence of gastric precursor lesions in countries with differential gastric cancer burden: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2024: S1542-S3565(24)00227-1. DOI: 10.1016/j.cgh.2024.02.023 |
2 | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492 |
3 | Digklia A, Wagner AD. Advanced gastric cancer: current treatment landscape and future perspectives[J]. World J Gastroenterol, 2016, 22(8): 2403-14. DOI: 10.3748/wjg.v22.i8.2403 |
4 | Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer[J]. Lancet, 2020, 396(10251): 635-48. DOI: 10.1016/s0140-6736(20)31288-5 |
5 | 朱正纲. 胃癌外科综合治疗的若干进展与展望[J]. 外科理论与实践, 2023, 28(1): 1-6. |
6 | Song ZY, Wu YY, Yang JB, et al. Progress in the treatment of advanced gastric cancer[J]. Tumour Biol, 2017, 39(7): 101042831771462. DOI: 10.1177/1010428317714626 |
7 | Brisinda G, Chiarello MM, Crocco A, et al. Postoperative mortality and morbidity after D2 lymphadenectomy for gastric cancer: a retrospective cohort study[J]. World J Gastroenterol, 2022, 28(3): 381-98. DOI: 10.3748/wjg.v28.i3.381 |
8 | Feng F, Tian YZ, Xu GH, et al. Diagnostic and prognostic value of CEA, CA19-9, AFP and CA125 for early gastric cancer[J]. BMC Cancer, 2017, 17(1): 737. DOI: 10.1186/s12885-017-3738-y |
9 | de Manzoni G, Yang HK. Gastric cancer surgery[J]. Updat Surg, 2018, 70(2):155. DOI: 10.1007/s13304-018-0551-3 |
10 | 贾 祺, 咸小红, 李泱润, 等. MAGE-A家族在胃癌中作用的研究进展[J]. 中南大学学报: 医学版, 2023, 48(2): 260-7. |
11 | Zhao QF, Cao L, Guan LL, et al. Immunotherapy for gastric cancer: dilemmas and prospect[J]. Brief Funct Genomics, 2019, 18(2): 107-12. DOI: 10.1093/bfgp/ely019 |
12 | Zheng CH, Xu YC, Zhao G, et al. Outcomes of laparoscopic total gastrectomy combined with spleen-preserving hilar lymphadenectomy for locally advanced proximal gastric cancer: a nonrandomized clinical trial[J]. JAMA Netw Open, 2021, 4(12): e2139992. DOI: 10.1001/jamanetworkopen.2021.39992 |
13 | Lin XL, Han T, Xia Q, et al. CHPF promotes gastric cancer tumorigenesis through the activation of E2F1[J]. Cell Death Dis, 2021, 12(10): 876. DOI: 10.1038/s41419-021-04148-y |
14 | Feng YY, Zhao M, Wang LJ, et al. The heterogeneity of signaling pathways and drug responses in intrahepatic cholangiocarcinoma with distinct genetic mutations[J]. Cell Death Dis, 2024, 15(1): 34. DOI: 10.1038/s41419-023-06406-7 |
15 | He HJ, Bing H, Liu GJ. TSR2 Induces laryngeal cancer cell apoptosis through inhibiting NF‑κB signaling pathway[J]. Laryngoscope, 2018, 128(4): E130-4. DOI: 10.1002/lary.27035 |
16 | He HJ, Zhu D, Sun J, et al. The Novel protein TSR2 inhibits the transcriptional activity of nuclear factor‑κB and induces apoptosis[J]. Mol Biol, 2011, 45(3): 451-7. DOI: 10.1134/s0026893311020099 |
17 | Zhao QX, Rangan R, Weng SN, et al. Inhibition of ribosome biogenesis in the epidermis is sufficient to trigger organism-wide growth quiescence independently of nutritional status in C. elegans[J]. PLoS Biol, 2023, 21(8): e3002276. DOI: 10.1371/journal.pbio.3002276 |
18 | Bu DC, Luo HT, Huo PP, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J]. Nucleic Acids Res, 2021, 49(W1): W317-25. DOI: 10.1093/nar/gkab447 |
19 | Sun XZ, Chen PX, Chen X, et al. KIF4A enhanced cell proliferation and migration via Hippo signaling and predicted a poor prognosis in esophageal squamous cell carcinoma[J]. Thorac Cancer, 2021, 12(4): 512-24. DOI: 10.1111/1759-7714.13787 |
20 | Thrift AP, El-Serag HB. Burden of gastric cancer[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 534-42. DOI: 10.1016/j.cgh.2019.07.045 |
21 | Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors[J]. J Surg Oncol, 2013, 107(3): 230-6. DOI: 10.1002/jso.23262 |
22 | Karimi P, Islami F, Anandasabapathy S, et al. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention[J]. Cancer Epidemiol Biomarkers Prev, 2014, 23(5): 700-13. DOI: 10.1158/1055-9965.epi-13-1057 |
23 | Maddineni G, Xie JJ, Brahmbhatt B, et al. Diet and carcinogenesis of gastric cancer[J]. Curr Opin Gastroenterol, 2022, 38(6): 588-91. DOI: 10.1097/mog.0000000000000875 |
24 | Yusefi AR, Bagheri Lankarani K, Bastani P, et al. Risk factors for gastric cancer: a systematic review[J]. Asian Pac J Cancer Prev, 2018, 19(3): 591-603. |
25 | Ansari S, Gantuya B, Tuan VP, et al. Diffuse gastric cancer: a summary of analogous contributing factors for its molecular pathogenicity[J]. Int J Mol Sci, 2018, 19(8): 2424. DOI: 10.3390/ijms19082424 |
26 | Guo ZJ, Guo L. Abnormal activation of RFC3, A YAP1/TEAD downstream target, promotes gastric cancer progression[J]. Int J Clin Oncol, 2024, 29(4): 442-55. DOI: 10.1007/s10147-024-02478-3 |
27 | Rong L, Li ZD, Leng X, et al. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway[J]. Biomed Pharmacother, 2020, 122: 109726. DOI: 10.1016/j.biopha.2019.109726 |
28 | Zanotelli MR, Zhang J, Reinhart-King CA. Mechanoresponsive metabolism in cancer cell migration and metastasis[J]. Cell Metab, 2021, 33(7): 1307-21. DOI: 10.1016/j.cmet.2021.04.002 |
29 | Wan GQ, Liu YH, Zhu J, et al. SLFN5 suppresses cancer cell migration and invasion by inhibiting MT1-MMP expression via AKT/GSK-3β/β-catenin pathway[J]. Cell Signal, 2019, 59: 1-12. DOI: 10.1016/j.cellsig.2019.03.004 |
30 | Yang YM, Karbstein K. The chaperone Tsr2 regulates Rps26 release and reincorporation from mature ribosomes to enable a reversible, ribosome-mediated response to stress[J]. Sci Adv, 2022, 8(8): eabl4386. DOI: 10.1126/sciadv.abl4386 |
31 | Yang YM, Jung Y, Abegg D, et al. Chaperone-directed ribosome repair after oxidative damage[J]. Mol Cell, 2023, 83(9): 1527-37, e5. DOI: 10.1016/j.molcel.2023.03.030 |
32 | Fernández-Parejo N, Lorenzo-Martín LF, García-Pedrero JM, et al. VAV2 orchestrates the interplay between regenerative proliferation and ribogenesis in both keratinocytes and oral squamous cell carcinoma[J]. Sci Rep, 2024, 14(1): 4060. DOI: 10.1038/s41598-024-54808-0 |
33 | Zang Y, Ran X, Yuan J, et al. Genomic hallmarks and therapeutic targets of ribosome biogenesis in cancer[J]. Brief Bioinform, 2024, 25(2): bbae023. DOI: 10.1093/bib/bbae023 |
34 | An Y, Xia YC, Wang ZY, et al. Clinical significance of ribosome production factor 2 homolog in hepatocellular carcinoma[J]. Clin Res Hepatol Gastroenterol, 2024, 48(3): 102289. DOI: 10.1016/j.clinre.2024.102289 |
35 | Miricescu D, Totan A, Stanescu-Spinu II, et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects[J]. Int J Mol Sci, 2020, 22(1): 173. DOI: 10.3390/ijms22010173 |
36 | Sun TS, Bi FF, Liu ZN, et al. TMEM119 facilitates ovarian cancer cell proliferation, invasion, and migration via the PDGFRB/PI3K/AKT signaling pathway[J]. J Transl Med, 2021, 19(1): 111. DOI: 10.1186/s12967-021-02781-x |
37 | Fresno Vara JA, Casado E, de Castro J, et al. PI3K/Akt signalling pathway and cancer[J]. Cancer Treat Rev, 2004, 30(2): 193-204. DOI: 10.1016/j.ctrv.2003.07.007 |
38 | Maiello D, Varone M, Vicidomini R, et al. Dyskerin downregulation can induce ER stress and promote autophagy via AKT-mTOR signaling deregulation[J]. Biomedicines, 2022, 10(5): 1092. DOI: 10.3390/biomedicines10051092 |
[1] | 王妍, 阮毓卿, 崔璨, 王秀. 交泰丸通过激活PI3K/AKT信号通路改善阿尔茨海默病模型小鼠大脑的葡萄糖代谢[J]. 南方医科大学学报, 2024, 44(5): 894-903. |
[2] | 王媛媛, 陈腾, 从小凡, 李依然, 陈蕊, 张配, 孙小锦, 赵素容. 扁蒴藤素通过活性氧调控PI3K/AKT通路增强顺铂诱导鼻咽癌细胞凋亡[J]. 南方医科大学学报, 2024, 44(5): 904-912. |
[3] | 杨晶晶, 殷丽霞, 段婷, 牛民主, 何震东, 陈心蕊, 张小凤, 李静, 耿志军, 左芦根. 胃癌组织中高表达ATP5A1与患者术后的不良预后和肿瘤细胞的糖代谢有关[J]. 南方医科大学学报, 2024, 44(5): 974-980. |
[4] | 黄秋虎, 周 建, 王子珍, 杨 堃, 陈政纲. miR-26b-3p 靶向 CREB1 调控神经胶质瘤细胞的增殖、迁移及侵袭[J]. 南方医科大学学报, 2024, 44(3): 578-584. |
[5] | 梁一豪, 赖颖君, 袁燕文, 袁 炜, 张锡波, 张拔山, 卢志锋. 基于GEO数据库筛选胃癌差异表达基因及其功能和通路富集分析[J]. 南方医科大学学报, 2024, 44(3): 605-616. |
[6] | 朱 瑾, 欧阳欣, 刘 屿, 钱叶梅, 夏 斌, 施延安, 俞力夫. miR-132-3p/CAMTA1对I-125粒子处理的面神经损伤大鼠施万细胞的调控作用[J]. 南方医科大学学报, 2024, 44(3): 571-577. |
[7] | 沈梦迪, 赵 娜, 邓晓晶, 邓 敏. COX6B2在胃癌组织中高表达并影响患者的远期预后:基于抑制p53信号调控胃癌细胞的增殖及细胞周期[J]. 南方医科大学学报, 2024, 44(2): 289-297. |
[8] | 王 娟, 杨雯钦, 刘 进, 石金凤, 肖 萍, 李美香. 脂联素通过上调PPARα/HOXA10通路改善多囊卵巢综合征大鼠的子宫内膜容受性[J]. 南方医科大学学报, 2024, 44(2): 298-307. |
[9] | 吴广阳, 宋添力, 唐 浪, 王一民, 刘 绪, 黄 胜. 竹节参总皂苷缓解CCl4诱导的大鼠急性肝损伤:基于调控PI3K/Akt/NF-κB信号通路[J]. 南方医科大学学报, 2024, 44(2): 244-251. |
[10] | 张 诺, 张 震, 张雨路, 宋 雪, 张小凤, 李 静, 左芦根, 胡建国. PCID2在胃癌组织中高表达并通过调控细胞周期进程和增殖影响患者预后[J]. 南方医科大学学报, 2024, 44(2): 324-332. |
[11] | 张文静, 张 诺, 杨 子, 张小凤, 孙奥飞, 王 炼, 宋 雪, 耿志军, 李 静, 胡建国. BZW1 高表达促进胃癌细胞的侵袭和转移:基于调控Wnt//β-catenin通路和促进上皮间质转化[J]. 南方医科大学学报, 2024, 44(2): 354-362. |
[12] | 段 婷, 张 震, 施金冉, 肖林雨, 杨晶晶, 殷丽霞, 张小凤, 耿志军, 陆国玉. CPNE3在胃癌中高表达并与患者的预后不良相关[J]. 南方医科大学学报, 2024, 44(1): 129-137. |
[13] | 冯 雯, 赖跃兴, 王 静, 徐 萍. 长链非编码RNA ABHD11-AS1促进胃癌细胞糖酵解并加速肿瘤恶性进展[J]. 南方医科大学学报, 2023, 43(9): 1485-1492. |
[14] | 刘雪柔, 杨玉梅, 蔡 慧, 张耀帅, 范方田, 李 娴, 李姗姗. 阿美替尼具有较好的抗神经母细胞瘤作用:基于下调MMP2和MMP9的表达[J]. 南方医科大学学报, 2023, 43(9): 1493-1499. |
[15] | 王 炼, 夏勇生, 张 震, 刘馨悦, 施金冉, 王月月, 李 静, 张小凤, 耿志军, 宋 雪, 左芦根. 高表达MRPL13促进胃癌细胞增殖并影响患者预后:基于抑制p53信号[J]. 南方医科大学学报, 2023, 43(9): 1558-1566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||