1 |
Longhino S, Chatzis LG, Dal Pozzolo R, et al. Sjögren's syndrome: one year in review 2023[J]. Clin Exp Rheumatol, 2023, 41(12): 2343-56.
|
2 |
Wei SJ, He QM, Zhang Q, et al. Traditional Chinese medicine is a useful and promising alternative strategy for treatment of Sjogren's syndrome: a review[J]. J Integr Med, 2021, 19(3): 191-202.
|
3 |
Xuan JX, Ji ZQ, Wang B, et al. Serological evidence for the association between epstein-barr virus infection and sjögren's syndrome[J]. Front Immunol, 2020, 11: 590444.
|
4 |
任 渊, 崔戈丹, 高永翔. 原发性干燥综合征患者颌下腺炎症反应机制研究进展[J]. 浙江大学学报: 医学版, 2021, 50(6): 783-94.
|
5 |
Mavragani CP. Mechanisms and new strategies for primary sjögren's syndrome[J]. Annu Rev Med, 2017, 68: 331-43.
|
6 |
Wang-Renault SF, Boudaoud S, Nocturne G, et al. Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary sjögren's syndrome[J]. Ann Rheum Dis, 2018, 77(1): 133-40.
|
7 |
Shan J, Jin H, Xu Y. T cell metabolism: a new perspective on Th17/treg cell imbalance in systemic lupus erythematosus[J]. Front Immunol, 2020, 11: 1027.
|
8 |
Guo XY, Dang WY, Li N, et al. PPAR‑α agonist fenofibrate ameliorates sjögren syndrome-like dacryoadenitis by modulating Th1/Th17 and Treg cell responses in NOD mice[J]. Invest Ophthalmol Vis Sci, 2022, 63(6): 12.
|
9 |
Mahesh G, Biswas R. MicroRNA-155: a master regulator of inflammation[J]. J Interferon Cytokine Res, 2019, 39(6): 321-30.
|
10 |
Yan JB, Luo MM, Chen ZY, et al. The function and role of the Th17/treg cell balance in inflammatory bowel disease[J]. J Immunol Res, 2020, 2020: 8813558.
|
11 |
李 雪, 张云龙, 宋子毅, 等.中药通过PI3K/Akt信号通路干预肾间质纤维化的研究进展[J].中国药房, 2024, 35(14): 1795-800.
|
12 |
Wang JC, Hu KL, Cai XY, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022, 12(1): 18-32.
|
13 |
Kapsogeorgou EK, Stergiou IE, Chatzis L, et al. The role of the Akt signaling pathway in sjögren's syndrome[J]. Mediterr J Rheumatol, 2023, 34(1): 113-6.
|
14 |
Zhang J, Zhang X, Shi XJ, et al. CXCL9, 10, 11/CXCR3 axis contributes to the progress of primary sjogren's syndrome by activating GRK2 to promote T lymphocyte migration[J]. Inflammation, 2023, 46(3): 1047-60.
|
15 |
Aiyegbusi O, McGregor L, McGeoch L, et al. Renal disease in primary sjögren's syndrome[J]. Rheumatol Ther, 2021, 8(1): 63-80.
|
16 |
Jung SW, Park EJ, Kim JS, et al. Renal tubular acidosis in patients with primary sjögren's syndrome[J]. Electrolyte Blood Press, 2017, 15(1): 17-22.
|
17 |
Ritter J, Chen YD, Stefanski AL, et al. Current and future treatment in primary sjögren's syndrome-A still challenging development[J]. Joint Bone Spine, 2022, 89(6): 105406.
|
18 |
Negrini S, Emmi G, Greco M, et al. Sjögren's syndrome: a systemic autoimmune disease[J]. Clin Exp Med, 2022, 22(1): 9-25.
|
19 |
Bjordal O, Norheim KB, Rødahl E, et al. Primary sjögren's syndrome and the eye[J]. Surv Ophthalmol, 2020, 65(2): 119-32.
|
20 |
戴 敏, 刘 婷, 许潆月, 等.原发性干燥综合征抑郁的研究进展[J].安徽医药, 2024, 28(3): 436-40.
|
21 |
Ramos-Casals M, Brito-Zerón P, Bombardieri S, et al. EULAR recommendations for the management of sjögren's syndrome with topical and systemic therapies[J]. Ann Rheum Dis, 2020, 79(1): 3-18.
|
22 |
Manfrè V, Chatzis LG, Cafaro G, et al. Sjögren's syndrome: one year in review 2022[J]. Clin Exp Rheumatol, 2022, 40(12): 2211-24.
|
23 |
Bayraktar R, van Roosbroeck K. MiR-155 in cancer drug resistance and as target for miRNA-based therapeutics[J]. Cancer Metastasis Rev, 2018, 37(1): 33-44.
|
24 |
Zhang JL, Zhu LL, Shi H, et al. Protective effects of miR-155-5p silencing on IFN-γ-induced apoptosis and inflammation in salivary gland epithelial cells[J]. Exp Ther Med, 2021, 22(2): 882.
|
25 |
Zhu F, Li HR, Liu YJ, et al. MiR-155 antagomir protect against DSS-induced colitis in mice through regulating Th17/Treg cell balance by Jarid2/Wnt/β‑catenin[J]. Biomedecine Pharmacother, 2020, 126: 109909.
|
26 |
Li L, Shan WQ, Zhu HJ, et al. SJMHE1 peptide from Schistosoma japonicum inhibits asthma in mice by regulating Th17/treg cell balance via miR-155[J]. J Inflamm Res, 2021, 14: 5305-18.
|
27 |
Revathidevi S, Munirajan AK. Akt in cancer: mediator and more[J]. Semin Cancer Biol, 2019, 59: 80-91.
|
28 |
Fan ZY, Liu YH, Shi ZL, et al. MiR-155 promotes interleukin-1β-induced chondrocyte apoptosis and catabolic activity by targeting PIK3R1-mediated PI3K/Akt pathway[J]. J Cell Mol Med, 2020, 24(15): 8441-51.
|
29 |
Zheng SJ, Xiao LR, Liu Y, et al. DZNep inhibits H3K27me3 deposition and delays retinal degeneration in the rd1 mice[J]. Cell Death Dis, 2018, 9(3): 310.
|
30 |
Wang LY, Jiang PF, Li JZ, et al. Loss of miR-155 sensitizes FLT3-ITD+AML to chemotherapy and FLT3 inhibitors via glycolysis blocking by targeting PIK3R1[J]. J Cancer, 2023, 14(1): 99-113.
|
31 |
Uko NE, Güner OF, Matesic DF, et al. Akt pathway inhibitors[J]. Curr Top Med Chem, 2020, 20(10): 883-900.
|
32 |
Ahmad Z, Somanath PR. AKT isoforms in the immune response in cancer[J]. Curr Top Microbiol Immunol, 2022, 436: 349-66.
|