南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (11): 2146-2155.doi: 10.12122/j.issn.1673-4254.2024.11.11
• • 上一篇
收稿日期:
2024-07-19
出版日期:
2024-11-20
发布日期:
2024-11-29
通讯作者:
田静
E-mail:hbxyrzj@hbmu.edu.cn;15030662@qq.com
作者简介:
任自敬,硕士,助理研究员,E-mail: hbxyrzj@hbmu.edu.cn
基金资助:
Zijing REN1,2(), Peiyang ZHOU1, Jing TIAN2()
Received:
2024-07-19
Online:
2024-11-20
Published:
2024-11-29
Contact:
Jing TIAN
E-mail:hbxyrzj@hbmu.edu.cn;15030662@qq.com
摘要:
目的 探索外周血浆中与帕金森病(PD)诊疗相关的关键基因和长链非编码RNA(lncRNA)。 方法 收集6例PD患者和6例健康对照者的外周血血浆样本。采用竞争性内源性RNA(ceRNA)芯片技术检测mRNA和lncRNA的表达,运用生物信息学方法对差异表达的基因进行分析。将DElncRNAs上游或下游10 kb内转录的DEmRNAs定义为DElncRNAs潜在的可顺式调控的靶基因。构建PD特异性蛋白质-蛋白质相互作用网络。利用差异lncRNAs与mRNA及已知的microRNA构建ceRNA网络。采用MPP+处理SH-SY5Y细胞建立PD细胞模型,验证关键lncRNA的功能。 结果 PD患者与健康对照者间有316个基因和986个lncRNA的表达存在差异(P<0.05)。通过GO和KEGG富集分析对差异表达的mRNA和lncRNA潜在的可顺式调控的靶基因进行了功能注释,预测了差异表达的mRNA和lncRNAs与microRNA的靶向关系,并根据差异表达的lncRNA的上调或下调分别构建了ceRNA网络。基于网络分析,推测lnc-MTG2-1∶1、lnc-CTSD-5∶1、lnc-PCCA-3∶1、lnc-VTCN1-3∶1、lnc-ZNF25-7∶1和lnc-DAZ3-1∶1可能是PD的关键lncRNA。在MPP+诱导的PD细胞模型中,lnc-CTSD-5∶1的表达变化最显著(P<0.01),且其沉默有助于恢复酪氨酸羟化酶的蛋白表达水平。 结论 PD患者血浆中的lncRNA表达模式发生改变,本研究发现了新的DEGs和DElncRNAs,为探索PD的发病机制和开发潜在的生物标志物提供了新的线索。
任自敬, 周佩洋, 田静. 基于ceRNA芯片研究帕金森病患者血浆长链非编码RNA表达谱并验证lnc-CTSD-5∶1在PD细胞模型中的作用[J]. 南方医科大学学报, 2024, 44(11): 2146-2155.
Zijing REN, Peiyang ZHOU, Jing TIAN. Plasma long noncoding RNA expression profiles in patients with Parkinson's disease and the role of lnc-CTSD-5:1 in a PD cell model: a ceRNA microarray-based study[J]. Journal of Southern Medical University, 2024, 44(11): 2146-2155.
图1 PD患者和健康对照的差异表达基因(DEGs)及lncRNA(DElncRNAs)
Fig.1 Differentially expressed genes (DEGs) and lncRNA (DElncRNAs) between PD and healthy individuals. A, B: Volcanic maps showing differences in plasma lncRNA and mRNA levels between PD patients and healthy control individuals. The significantly up-regulated DEmRNAs and DElncRNAs are shown in green, the significantly down-regulated DemRNAs are shown in blue, and those without significant differences are shown in orange. C, D: Cluster heat map showing all DEmRNAs and DElncRNAs in each sample.
图2 DEGs的PPI网络(A)及GO(B)和KEGG(C)富集分析
Fig.2 PPI network (A) and GO (B) and KEGG (C) enrichment analysis of the DEGs in PD patients and healthy control individuals.
图3 DElncRNAs候选顺式调控靶基因的PPI网络(A)及GO(B)和KEGG(C)富集分析
Fig. 3 PPI network (A) and GO (B) and KEGG (C) enrichment analysis of DElncRNAs candidate cis-regulatory target genes in PD patients and healthy control subjects.
图6 在PD细胞模型中验证 ceRNA 网络中的DElncRNAs
Fig.6 Validation of DElncRNAs in ceRNA networks in a PD cell model. A: Viability of SH-SY5Y cells determined by CCK-8 method after treatment with MPP+ at different concentrations for 24, 48 and 72 h. B: qRT-PCR for detecting expression levels of lnc-CTSD-5:1, lnc-VTCN1-3:1, lnc-PCCA-3:1, lnc-MTG2-1:1 and lnc-ZNF25-7:1 in SH-SY5Y cells treated with 500 μmol/L MPP+ treatment for 48 h. C: Western blotting for analyzing the expression of TH protein in SH-SY5Y cells treated with 500 μmol/L MPP+ for 48 h. D: lnc-CTSD-5:1 expression in SH-SY5Y cells after transfection with lnc-CTSD-5:1 siRNA detected by qRT-PCR. E: Western blotting for analyzing the expression of TH protein in SH-SY5Y cells with lnc-CTSD-5:1 knockdown treated with 500 μmol/L MPP+ for 48 h. *P<0.05, **P<0.01, ***P<0.001 vs 0 μmol/L, control group, or siNC group.
1 | 陈芝君, 马 建, 唐 娜, 等. 中国帕金森病疾病负担变化趋势分析及预测[J]. 中国慢性病预防与控制, 2022, 30(9): 649-54. |
2 | 刘永文, 焦 敏, 王 岩, 等. 1990-2019年中国帕金森病疾病负担分析[J]. 疾病监测, 2024, 39(3): 363-8. |
3 | Morris HR, Spillantini MG, Sue CM, et al. The pathogenesis of Parkinson's disease[J]. Lancet, 2024, 403(10423): 293-304. |
4 | Li K, Wang ZQ. lncRNA NEAT1: key player in neurodegenerative diseases[J]. Ageing Res Rev, 2023, 86: 101878. |
5 | Su LN, Li RQ, Zhang ZQ, et al. Identification of altered exosomal microRNAs and mRNAs in Alzheimer's disease[J]. Ageing Res Rev, 2022, 73: 101497. |
6 | Wang C, Duan YJ, Duan G, et al. Stress induces dynamic, cytotoxicity-antagonizing TDP-43 nuclear bodies via paraspeckle LncRNA NEAT1-mediated liquid-liquid phase separation[J]. Mol Cell, 2020, 79(3): 443-58. e7. |
7 | Yan PX, Luo S, Lu JY, et al. Cis- and trans-acting lncRNAs in pluripotency and reprogramming[J]. Curr Opin Genet Dev, 2017, 46: 170-8. |
8 | Li LL, Li ZW, Meng XQ, et al. Histone lactylation-derived LINC01127 promotes the self-renewal of glioblastoma stem cells via the cis-regulating the MAP4K4 to activate JNK pathway[J]. Cancer Lett, 2023, 579: 216467. |
9 | Ben-Tov Perry R, Tsoory M, Tolmasov M, et al. Silc1 long noncoding RNA is an immediate-early gene promoting efficient memory formation[J]. Cell Rep, 2023, 42(10): 113168. |
10 | Bazrgar M, Mirmotalebisohi SA, Ahmadi M, et al. Comprehensive analysis of lncRNA-associated ceRNA network reveals novel potential prognostic regulatory axes in glioblastoma multiforme[J]. J Cell Mol Med, 2024, 28(11): e18392. |
11 | Zhao J, Feng ZY, Deng H, et al. Bioinformatics-based analysis reveals IDR-1018-mediated ceRNA regulation network for protective effect on hypoxia-ischemic brain injury in neonatal mice[J]. Exp Neurol, 2022, 357: 114159. |
12 | Simchovitz A, Hanan M, Niederhoffer N, et al. NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress[J]. FASEB J, 2019, 33(10): 11223-34. |
13 | Boros FA, Maszlag-Török R, Vécsei L, et al. Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson's disease[J]. Brain Res, 2020, 1730: 146672. |
14 | Sun Q, Zhang YL, Wang SL, et al. NEAT1 decreasing suppresses Parkinson's disease progression via acting as miR-1301-3p sponge[J]. J Mol Neurosci, 2021, 71(2): 369-78. |
15 | Yuan XJ, Wu YN, Lu L, et al. Long noncoding RNA SNHG14 knockdown exerts a neuroprotective role in MPP+-induced Parkinson's disease cell model through mediating miR-135b-5p/KPNA4 axis[J]. Metab Brain Dis, 2022, 37(7): 2363-73. |
16 | Liu S, Cui B, Dai ZX, et al. Long non-coding RNA HOTAIR promotes Parkinson's disease induced by MPTP through up-regulating the expression of LRRK2[J]. Curr Neurovasc Res, 2016, 13(2): 115-20. |
17 | Bu LL, Xie YY, Lin DY, et al. LncRNA-T199678 mitigates α-synuclein-induced dopaminergic neuron injury via miR-101-3p[J]. Front Aging Neurosci, 2020, 12: 599246. |
18 | Zhou Q, Zhang MM, Liu M, et al. LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson's disease progression[J]. Aging, 2021, 13(3): 4115-37. |
19 | Zhang QS, Wang ZH, Zhang JL, et al. Beta-asarone protects against MPTP-induced Parkinson's disease via regulating long non-coding RNA MALAT1 and inhibiting α‑synuclein protein expression[J]. Biomed Pharmacother, 2016, 83: 153-9. |
20 | Xia DJ, Sui RB, Zhang Z. Administration of resveratrol improved Parkinson's disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway[J]. J Cell Biochem, 2019, 120(4): 4942-51. |
21 | Snead DM, Matyszewski M, Dickey AM, et al. Structural basis for Parkinson's disease-linked LRRK2's binding to microtubules[J]. Nat Struct Mol Biol, 2022, 29(12): 1196-207. |
22 | Sosero YL, Gan-Or Z. LRRK2 and Parkinson's disease: from genetics to targeted therapy[J]. Ann Clin Transl Neurol, 2023, 10(6): 850-64. |
23 | Jennings D, Huntwork-Rodriguez S, Vissers MFJM, et al. LRRK2 inhibition by BIIB122 in healthy participants and patients with Parkinson's disease[J]. Mov Disord, 2023, 38(3): 386-98. |
24 | 赵丽丽, 张 硕, 张 洋, 等. 汉族人群LRRK2基因突变携带者与非携带者患家族性帕金森病的风险预测[J]. 中国老年学杂志, 2024, 44(5): 1099-101. |
25 | Watanabe R, Buschauer R, Böhning J, et al. The in situ structure of Parkinson's disease-linked LRRK2[J]. Cell, 2020, 182(6): 1508-18.e16. |
26 | Zhang Q, Xu Y, Lee J, et al. A myosin-7B-dependent endocytosis pathway mediates cellular entry of α‑synuclein fibrils and polycation-bearing cargos[J]. Proc Natl Acad Sci USA, 2020, 117(20): 10865-75. |
27 | Zhou HY, Simion V, Pierce JB, et al. LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4[J]. FASEB J, 2021, 35(1): e21133. |
28 | Winkler L, Jimenez M, Zimmer JT, et al. Functional elements of the cis-regulatory lincRNA-p21[J]. Cell Rep, 2022, 39(3): 110687. |
29 | Li J, Yang TT, Tang HF, et al. Inhibition of lncRNA MAAT controls multiple types of muscle atrophy by cis- and trans-regulatory actions[J]. Mol Ther, 2021, 29(3): 1102-19. |
30 | Marchetti B, Tirolo C, L’Episcopo F, et al. Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair[J]. Aging Cell, 2020, 19(3): e13101. |
31 | Gamit N, Dharmarajan A, Sethi G, et al. Want of Wnt in Parkinson's disease: could sFRP disrupt interplay between Nurr1 and Wnt signaling?[J]. Biochem Pharmacol, 2023, 212: 115566. |
32 | Liu L, Zhou TT, Li T, et al. LncRNA DLX6-AS1 promotes microglial inflammatory response in Parkinson's disease by regulating the miR-223-3p/NRP1 axis[J]. Behav Brain Res, 2022, 431: 113923. |
33 | Xu W, Zhang L, Geng Y, et al. Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson's disease by regulating NLRP3 pathway through sponging miR-223-3p[J]. Int Immunopharmacol, 2020, 85: 106614. |
34 | Ma JJ, Sun WH, Chen SY, et al. The long noncoding RNA GAS5 potentiates neuronal injury in Parkinson's disease by binding to microRNA-150 to regulate Fosl1 expression[J]. Exp Neurol, 2022, 347: 113904. |
35 | Yousefi M, Peymani M, Ghaedi K, et al. Significant modulations of linc001128 and linc0938 with miR-24-3p and miR-30c-5p in Parkinson disease[J]. Sci Rep, 2022, 12(1): 2569. |
36 | Honarmand Tamizkar K, Gorji P, Gholipour M, et al. Parkinson's disease is associated with dysregulation of circulatory levels of lncRNAs[J]. Front Immunol, 2021, 12: 763323. |
37 | Ozdilek B, Kaya Alper I, Demircan B, et al. Clinical significance of serum lncRNA H19, GAS5, HAR1B and linc01783 levels in Parkinson's disease[J]. Ideggyogy Sz, 2023, 76(5/6): 189-96. |
38 | Tolosa E, Garrido A, Scholz SW, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5): 385-97. |
[1] | 李菲凡, 向俊馨, 刘佳慧, 王效静, 江浩. LncRNA FEZF1-AS1通过miR-130a-5p/CCND1轴促进非小细胞肺癌发展的分子机制研究[J]. 南方医科大学学报, 2024, 44(5): 841-850. |
[2] | 王飞霞, 张政, 孙艳, 杨柳菁, 郭桐彤, 潘夜厅, 丁嵩涛, 蒋林, 刘含登. Bmal1可能介导了丁酸钠对帕金森病小鼠的神经保护作用[J]. 南方医科大学学报, 2024, 44(5): 876-884. |
[3] | 梁一豪, 赖颖君, 袁燕文, 袁 炜, 张锡波, 张拔山, 卢志锋. 基于GEO数据库筛选胃癌差异表达基因及其功能和通路富集分析[J]. 南方医科大学学报, 2024, 44(3): 605-616. |
[4] | 桂建军, 孙晓东, 温 舒, 刘 欣, 覃冰清, 桑 明. 白藜芦醇对帕金森病模型小鼠多巴胺能神经元的保护作用:基于抑制TLR4/MyD88/NF-κB通路[J]. 南方医科大学学报, 2024, 44(2): 270-279. |
[5] | 陈韦任, 杜 辉, 沙 媛, 周玉杰, 梁 静, 陈韵岱, 马 茜, 吴雪萍, 钱 赓. 长链非编码RNA H19促进血管钙化:基于抑制Bax抑制因子1/视神经萎缩蛋白1通路[J]. 南方医科大学学报, 2023, 43(9): 1469-1475. |
[6] | 冯 雯, 赖跃兴, 王 静, 徐 萍. 长链非编码RNA ABHD11-AS1促进胃癌细胞糖酵解并加速肿瘤恶性进展[J]. 南方医科大学学报, 2023, 43(9): 1485-1492. |
[7] | 赵齐林, 王 楠, 李亚霁, 吴庆琛, 吴兰香. Lnc-TMEM132D-AS1高表达明显降低非小细胞肺癌对奥希替尼的敏感性[J]. 南方医科大学学报, 2023, 43(2): 242-250. |
[8] | 张 铭, 于 浩, 邵 阳, 宋国栋, 陈铭锐, 刘顺利. 纳米脂肪联合富血小板血浆治疗大鼠压力性损伤创面的实验研究[J]. 南方医科大学学报, 2023, 43(12): 2061-2070. |
[9] | 王 静, 陈雪祎, 孙 丽, 陈雪梅, 李 慧, 熊彬睿, 王海华. 长链非编码RNA ZEB1-AS1通过HMGB1/TLR-4信号轴加剧大鼠脑缺血/再灌注损伤[J]. 南方医科大学学报, 2022, 42(8): 1134-1142. |
[10] | 王 惠, 黎雯雯, 张冬艳. 泛癌分析长链非编码RNA MIR22HG的表达特征[J]. 南方医科大学学报, 2022, 42(4): 473-485. |
[11] | 高莉莉, 张 雄, 窦思雨, 岳小丁, 杨捷玲. 干扰长链编码RNA FOXCUT能抑制鼻咽癌细胞上皮间质转化及诱导线粒体损伤[J]. 南方医科大学学报, 2021, 41(9): 1334-1341. |
[12] | 黄河灵, 高玉元, 聂 坤, 王丽娟. 巨噬细胞移动抑制因子介导MPP+/MPTP诱导的小胶质细胞NLRP3炎症小体的激活[J]. 南方医科大学学报, 2021, 41(7): 972-979. |
[13] | 孙艳秋, 刘 健, 忻 凌, 周 琴, 陈晓露, 丁 香, 张先恒. 长链非编码RNA Linc00638对类风湿关节炎患者炎症和氧化应激的影响[J]. 南方医科大学学报, 2021, 41(7): 965-971. |
[14] | 孙子久, 胡 静, 胡 凯, 唐 敏, 孙恃雷, 方玉婷, 余伙梅, 张 彦. LncRNA SNHG3对宫颈癌细胞SiHa增殖、迁移及侵袭的影响[J]. 南方医科大学学报, 2021, 41(6): 931-936. |
[15] | 王德奖, 李 挺, 徐颖怡, 杨雪雯, 何铭垣, 张智勇, 吴 炜, 燕 翼. 富血小板血浆可减轻大鼠急性心肌缺血-再灌注损伤[J]. 南方医科大学学报, 2021, 41(5): 775-782. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||