Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (9): 1938-1945.doi: 10.12122/j.issn.1673-4254.2025.09.13
Qianqian MA1(), Yuqi NIU2, Mingyu ZUO1, Xin LI1, Junke FU1, Jinjin WANG2(
)
Received:
2025-02-13
Online:
2025-09-20
Published:
2025-09-28
Contact:
Jinjin WANG
E-mail:wtt01232024@163.com;wangjinjin@hactcm.edu.cn
Supported by:
Qianqian MA, Yuqi NIU, Mingyu ZUO, Xin LI, Junke FU, Jinjin WANG. Guijianyu alleviates advanced glycation endproducts-induced mouse renal podocyte injury by inhibiting the AGEs-RAGE signaling pathway[J]. Journal of Southern Medical University, 2025, 45(9): 1938-1945.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.09.13
Gene | Forward 5'-3' | Reverse 5'-3' |
---|---|---|
RAGE | CCACTGGAATTGTCGATGAGG | CTCGGACTCGGTAGTTGGACT |
NF-κB | GCAGAAAGAAGACATTGAGGTGTAT | GCGATCATCTGTGTCTGGCA |
IL-6 | CCCCAATTTCCAATGCTCTCC | CGCACTAGGTTTGCCGAGTA |
VEGFA | TAACGATGAAGCCCTGGAGTG | CACAGTGAACGCTCCAGGATTTA |
β-actin | GTGACGTTGACATCCGTAAAGA | GTAACAGTCCGCCTAGAAGCAC |
Tab.1 Primer sequences for RT-qPCR
Gene | Forward 5'-3' | Reverse 5'-3' |
---|---|---|
RAGE | CCACTGGAATTGTCGATGAGG | CTCGGACTCGGTAGTTGGACT |
NF-κB | GCAGAAAGAAGACATTGAGGTGTAT | GCGATCATCTGTGTCTGGCA |
IL-6 | CCCCAATTTCCAATGCTCTCC | CGCACTAGGTTTGCCGAGTA |
VEGFA | TAACGATGAAGCCCTGGAGTG | CACAGTGAACGCTCCAGGATTTA |
β-actin | GTGACGTTGACATCCGTAAAGA | GTAACAGTCCGCCTAGAAGCAC |
Fig.1 Ultrastructure of podocytes of db/db mice under electron microscope (Original magnification: ×15 000). A: Normal group. B: Model group. C: Guijianyu low-dose group. D: Guijianyu medium-dose group. E: Guijianyu high-dose group. F: Irbesartan group.
Fig.2 Immunohistochemistry for NF-κB, IL-6, VEGFA, and TNF-α in mouse renal tissues in each group (×400). A: Normal group. B: Model group. C: Guijianyu low-dose group. D: Guijianyu medium-dose group. E: Guijianyu high-dose group. F: Irbesartan group.
Group | NF-κB (p65) | VEGFA | TNF-α | IL-6 |
---|---|---|---|---|
A | 0.120±0.036 | 0.067±0.015 | 0.085±0.017 | 0.102±0.011 |
B | 0.210±0.010 | 0.123±0.005* | 0.121±0.007* | 0.143±0.015* |
C | 0.173±0.023* | 0.097±0.015 | 0.112±0.001 | 0.123±0.012 |
D | 0.146±0.015 | 0.087±0.012# | 0.108±0.004 | 0.117±0.015# |
E F | 0.130±0.010# 0.137±0.006# | 0.067±0.006# 0.063±0.015# | 0.102±0.002# 0.099±0.006# | 0.103±0.015# 0.103±0.006# |
P | <0.001 | 0.013 | 0.003 | 0.012 |
Tab.2 Expression levels of NF-κB (p65), VEGFA, TNF-α and IL-6 proteins in the kidney of DKD mouse models in each group (Mean±SD, n=3)
Group | NF-κB (p65) | VEGFA | TNF-α | IL-6 |
---|---|---|---|---|
A | 0.120±0.036 | 0.067±0.015 | 0.085±0.017 | 0.102±0.011 |
B | 0.210±0.010 | 0.123±0.005* | 0.121±0.007* | 0.143±0.015* |
C | 0.173±0.023* | 0.097±0.015 | 0.112±0.001 | 0.123±0.012 |
D | 0.146±0.015 | 0.087±0.012# | 0.108±0.004 | 0.117±0.015# |
E F | 0.130±0.010# 0.137±0.006# | 0.067±0.006# 0.063±0.015# | 0.102±0.002# 0.099±0.006# | 0.103±0.015# 0.103±0.006# |
P | <0.001 | 0.013 | 0.003 | 0.012 |
Group | RAGE | NF-κB(p65) | IL-6 |
---|---|---|---|
A | 1.00±0.09 | 1.00±0.03 | 1.00±0.14 |
B | 1.83±0.15* | 1.71±0.16* | 1.42±0.08* |
C | 1.25±0.11# | 1.22±0.26# | 1.21±0.07# |
D | 1.13±0.06# | 1.10±0.18# | 1.18±0.05# |
E F | 1.10±0.38# 1.12±0.02# | 1.05±0.34# 1.09±0.16# | 1.06±0.04# 1.04±0.14# |
P | <0.001 | 0.013 | 0.002 |
Tab.3 Expression levels of RAGE, NF-κB (p65) and IL-6 mRNA in the kidney of DKD mouse models in each group (Mean±SD, n=3)
Group | RAGE | NF-κB(p65) | IL-6 |
---|---|---|---|
A | 1.00±0.09 | 1.00±0.03 | 1.00±0.14 |
B | 1.83±0.15* | 1.71±0.16* | 1.42±0.08* |
C | 1.25±0.11# | 1.22±0.26# | 1.21±0.07# |
D | 1.13±0.06# | 1.10±0.18# | 1.18±0.05# |
E F | 1.10±0.38# 1.12±0.02# | 1.05±0.34# 1.09±0.16# | 1.06±0.04# 1.04±0.14# |
P | <0.001 | 0.013 | 0.002 |
Group | Cell viability |
---|---|
Normal | 100.00±3.45 |
Model | 67.86±0.93* |
150 mg/L Guijianyu | 84.33±8.45# |
350 mg/L Guijianyu | 88.00±4.84# |
550 mg/L Guijianyu | 96.28±2.94# |
750 mg/L Guijianyu | 86.01±4.89# |
P | <0.001 |
Tab.4 Effect of Guijianyu on AGEs-induced MPC-5 cell viability (%, Mean±SD, n=3)
Group | Cell viability |
---|---|
Normal | 100.00±3.45 |
Model | 67.86±0.93* |
150 mg/L Guijianyu | 84.33±8.45# |
350 mg/L Guijianyu | 88.00±4.84# |
550 mg/L Guijianyu | 96.28±2.94# |
750 mg/L Guijianyu | 86.01±4.89# |
P | <0.001 |
Group | Cell viability |
---|---|
Normal | 100±1.32 |
Model | 67.78±5.06* |
Guijianyu | 88.66±2.39# |
RAGE agonist | 48.38±7.00## |
Guijianyu+RAGE agonist | 76.40±2.85** |
P | <0.001 |
Tab.5 Effect of Guijianyu on AGes-induced MPC-5 cell viability (%, Mean±SD, n=3)
Group | Cell viability |
---|---|
Normal | 100±1.32 |
Model | 67.78±5.06* |
Guijianyu | 88.66±2.39# |
RAGE agonist | 48.38±7.00## |
Guijianyu+RAGE agonist | 76.40±2.85** |
P | <0.001 |
Fig.3 Protein expressions of RAGE, NF-κB(p65), VEGFA, TNF-α, IL-6, and caspase-3 in MPC-5 cells in each group. 1: Normal group; 2: Model group; 3: Guijianyu group; 4: RAGE agonist group; 5: Guijianyu+RAGE agonist group.
Group | RAGE | NF-κB(p65) | VEGFA | TNF-α | IL-6 | Caspase-3 |
---|---|---|---|---|---|---|
1 | 1.00±0.05 | 1.00±0.05 | 1.00±0.05 | 1.00±0.05 | 1.00±0.05 | 1.00±0.05 |
2 | 2.01±0.17* | 1.41±0.19* | 1.55±0.27* | 1.51±0.12** | 1.53±0.14* | 1.64±0.24* |
3 | 1.14±0.31# | 0.91±0.14# | 1.15±0.16# | 1.06±0.14# | 1.16±0.14# | 1.20±0.25# |
4 | 2.11±0.29 | 1.17±0.13 | 1.57±0.29 | 1.37±0.23 | 1.37±0.07 | 1.81±0.13 |
5 | 0.96±0.56## | 0.99±0.24 | 1.11±0.12## | 0.96±0.39## | 1.01±0.20## | 1.13±0.14## |
P | 0.002 | 0.023 | 0.015 | 0.039 | 0.002 | 0.001 |
Tab.6 Effects of Guijianyu on the protein expressions of RAGE, VEGFA, TNF-α, NF-κB (p65), IL-6 and Caspase-3 in MPC-5 cells in each group (Mean±SD, n=3)
Group | RAGE | NF-κB(p65) | VEGFA | TNF-α | IL-6 | Caspase-3 |
---|---|---|---|---|---|---|
1 | 1.00±0.05 | 1.00±0.05 | 1.00±0.05 | 1.00±0.05 | 1.00±0.05 | 1.00±0.05 |
2 | 2.01±0.17* | 1.41±0.19* | 1.55±0.27* | 1.51±0.12** | 1.53±0.14* | 1.64±0.24* |
3 | 1.14±0.31# | 0.91±0.14# | 1.15±0.16# | 1.06±0.14# | 1.16±0.14# | 1.20±0.25# |
4 | 2.11±0.29 | 1.17±0.13 | 1.57±0.29 | 1.37±0.23 | 1.37±0.07 | 1.81±0.13 |
5 | 0.96±0.56## | 0.99±0.24 | 1.11±0.12## | 0.96±0.39## | 1.01±0.20## | 1.13±0.14## |
P | 0.002 | 0.023 | 0.015 | 0.039 | 0.002 | 0.001 |
Group | RAGE | NF-κB (p65) | VEGFA | IL-6 |
---|---|---|---|---|
1 | 1.00±0.07 | 1.00±0.05 | 1.00±0.11 | 1.00±0.11 |
2 | 4.44±0.40* | 2.49±0.21* | 1.68±0.11* | 2.09±0.12* |
3 | 1.30±0.20# | 1.15±0.07# | 1.13±0.30# | 1.11±0.05# |
4 | 5.04±0.88 | 2.64±0.15 | 2.77±0.08 | 3.62±1.19 |
5 | 1.48±0.40## | 1.36±0.24## | 1.31±0.27## | 1.34±0.25## |
P | <0.001 | <0.001 | <0.001 | 0.001 |
Tab.7 Effect of Guijianyu on mRNA expressions of RAGE, NF-κB (p65), IL-6 and VEGFA in MPC-5 cells in each group (Mean±SD, n=3)
Group | RAGE | NF-κB (p65) | VEGFA | IL-6 |
---|---|---|---|---|
1 | 1.00±0.07 | 1.00±0.05 | 1.00±0.11 | 1.00±0.11 |
2 | 4.44±0.40* | 2.49±0.21* | 1.68±0.11* | 2.09±0.12* |
3 | 1.30±0.20# | 1.15±0.07# | 1.13±0.30# | 1.11±0.05# |
4 | 5.04±0.88 | 2.64±0.15 | 2.77±0.08 | 3.62±1.19 |
5 | 1.48±0.40## | 1.36±0.24## | 1.31±0.27## | 1.34±0.25## |
P | <0.001 | <0.001 | <0.001 | 0.001 |
[1] | Audzeyenka I, Bierżyńska A, Lay AC. Podocyte bioenergetics in the development of diabetic nephropathy: the role of mitochondria[J]. Endocrinology, 2022, 163(1): bqab234. doi:10.1210/endocr/bqab234 |
[2] | Zhang L, Wen Z, Han L, et al. Research progress on the pathological mechanisms of podocytes in diabetic nephropathy[J]. J Diabetes Res, 2020, 2020: 7504798. doi:10.1155/2020/7504798 |
[3] | Fedulovs A, Janevica J, Kruzmane L, et al. Glucose control and variability assessed by continuous glucose monitoring in patients with type 1 diabetes and diabetic kidney disease[J]. Biomed Rep, 2025, 22(2): 23. doi:10.3892/br.2024.1901 |
[4] | Li YJ, Duan YQ, Chu QQ, et al. G-protein coupled receptor GPR124 protects against podocyte senescence and injury in diabetic kidney disease[J]. Kidney Int, 2025, 107(4): 652-65. doi:10.1016/j.kint.2024.12.013 |
[5] | 徐 洋, 王 敏, 张恒璐, 等. 达格列净通过Rffl抑制STAT1/TGF-β1信号通路改善糖尿病肾病肾小管上皮细胞EMT和纤维化[J]. 南京医科大学学报: 自然科学版, 2023, 43(9): 1201-7. |
[6] | 陆钰婷, 高常柏, 张童燕, 等. 鬼箭羽的本草学研究[J]. 时珍国医国药, 2020, 31(7): 1632-4. doi:10.3969/j.issn.1008-0805.2020.07.028 |
[7] | 郭延秀, 席少阳, 马 毅, 等. 鬼箭羽化学成分及药理活性研究进展[J]. 中国现代应用药学, 2021, 38(18): 2305-16. |
[8] | 陈明环, 王咏兰, 李相国, 等. 鬼箭羽醇提取物通过阻止氧化应激和抑制TNF-α-NF-κB及TβR1-Smad2/3通路减轻兔肾缺血再灌注损伤[J]. 中国病理生理杂志, 2022, 38(4): 688-97. |
[9] | 杜雨璇, 谢治深, 徐江雁, 等. 鬼箭羽化学成分和药理作用的研究进展及其质量标志物预测[J]. 天然产物研究与开发, 2024, 36(6): 1064-81, 1044. |
[10] | Chen YP, Chen J, Jiang M, et al. Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling[J]. Life Sci, 2020, 252: 117653. doi:10.1016/j.lfs.2020.117653 |
[11] | Nishad R, Meshram P, Singh AK, et al. Activation of Notch1 signaling in podocytes by glucose-derived AGEs contributes to proteinuria[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001203. doi:10.1136/bmjdrc-2020-001203 |
[12] | Zhuang GD, Deng SM, Chen MD, et al. Huang-Lian-Jie-Du Decoction alleviates diabetic encephalopathy by regulating inflammation and pyroptosis via suppression of AGEs/RAGE/NF-κB pathways[J]. J Ethnopharmacol, 2025, 337: 118787. doi:10.1016/j.jep.2024.118787 |
[13] | Shi Q, Zhou T, Hou W, et al. Isoliquiritigenin protects against diabetic nephropathy in db/db mice by inhibiting advanced glycation end product-receptor for advanced glycation end product axis[J]. Drug Dev Res, 2025, 86(1): e70051. doi:10.1002/ddr.70051 |
[14] | Wang WT, Zhao WS, Song XX, et al. Zhongfeng decoction attenuates cerebral ischemia-reperfusion injury by inhibiting autophagy via regulating the AGE-RAGE signaling pathway[J]. J Ethnopharmacol, 2025, 336: 118718. doi:10.1016/j.jep.2024.118718 |
[15] | 王瑾瑾, 牛钰琪, 马倩倩, 等. 基于AGEs-RAGE信号转导通路的鬼箭羽干预糖尿病肾病小鼠作用机制研究 [J]. 中国慢性病预防与控制, 2025, 33(2): 126-34. |
[16] | 樊俐慧, 王志刚, 杨 霞. 基于网络药理学与细胞实验探讨葛连调糖丸对2型糖尿病的预防作用 [J]. 中成药,47(5): 1-10. |
[17] | Shen S, Zhong H, Zhou X, et al. Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment[J]. Pharm Biol, 2024, 62(1): 222-32. doi:10.1080/13880209.2024.2314705 |
[18] | Benzing T, Salant D. Insights into glomerular filtration and albuminuria[J]. N Engl J Med, 2021, 384(15): 1437-46. doi:10.1056/nejmra1808786 |
[19] | Tomita I, Kume S, Sugahara S, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition[J]. Cell Metab, 2020, 32(3): 404-19.e6. doi:10.1016/j.cmet.2020.06.020 |
[20] | 卢 昭, 闫 镛. 闫镛教授治疗糖尿病肾病经验; proceedings of the 中华中医药学会糖尿病分会全国中医药糖尿病大会(第十九次), 中国安徽合肥, F, 2018 [C]. |
[21] | 洑晓哲, 张耀夫, 赵进喜, 等. 赵进喜应用鬼箭羽、牛蒡子对药治疗糖尿病肾脏病经验探析 [J]. 中华中医药杂志, 2021, 36(8): 4742-4. |
[22] | 张娉娜, 包 能, 孔 薇. 孔薇治疗糖尿病肾病经验举隅[J]. 中国中医基础医学杂志, 2020, 26(9): 1384-6. |
[23] | 陆 跃, 陈仁寿. 鬼箭羽的本草考证[J]. 中药材, 2020, 43(4): 1007-11. |
[24] | 王瑾瑾, 牛钰琪, 马倩倩, 等. 鬼箭羽对糖尿病肾病小鼠肾脏结构及功能的影响[J]. 郑州大学学报: 医学版, 2024, 59(4): 454-8. |
[25] | Lehtonen S, Meri S. Podocyte-mediated protection from kidney injury[J]. J Am Soc Nephrol, 2025, 36(2): 166-8. doi:10.1681/asn.0000000594 |
[26] | Lv C, Qiao XH, Shi Z, et al. Dihuangzicao granules regulate the AGE/RAGE/NF‑κB signaling pathway to inhibit inflammation in psoriatic mice via network pharmacologyand experimental validation[J]. Comb Chem High Throughput Screen, 2024, 27: doi: 10.2174/0113862073313333240912080819. Online ahead of print. doi:10.2174/0113862073313333240912080819 |
[27] | Zhang XM, Min XR, Xie HX, et al. Piperazine ferulate inhibits diabetic nephropathy by suppressing AGE/RAGE-mediated inflammatory signaling in rats and podocytes[J]. Front Pharmacol, 2024, 15: 1394369. doi:10.3389/fphar.2024.1394369 |
[28] | Li Z, Zhao Z, Chen S, et al. Ge-Gen-Qin-Lian decoction alleviates the symptoms of type 2 diabetes mellitus with inflammatory bowel disease via regulating the AGE-RAGE pathway[J]. BMC Complement Med Ther, 2024, 24(1): 225. doi:10.1186/s12906-024-04526-x |
[29] | Li S, Fan C, Li X, et al. Cannabidiol ameliorates inflammatory response partly by AGE-RAGE pathway in diabetic mice[J]. Drug Dev Res, 2023, 84(7): 1427-36. doi:10.1002/ddr.22093 |
[30] | Ma X, Hao C, Yu M, et al. Investigating the molecular mechanism of quercetin protecting against podocyte injury to attenuate diabetic nephropathy through network pharmacology, MicroarrayData analysis, and molecular docking[J]. Evid Based Complement Alternat Med, 2022, 2022: 7291434. doi:10.1155/2022/7291434 |
[31] | Fatima N, Khan MI, Jawed H, et al. Cinnamaldehyde ameliorates diabetes-induced biochemical impairments and AGEs macromo-lecules in a pre-clinical model of diabetic nephropathy[J]. BMC Pharmacol Toxicol, 2024, 25(1): 85. doi:10.1186/s40360-024-00811-0 |
[32] | Jahan H, Tufail P, Shamim S, et al. 1, 2, 4-Triazine derivatives as agents for the prevention of AGE-RAGE-mediated inflammatory cascade in THP-1 monocytes: an approach to prevent inflammation-induced late diabetic complications[J]. Int Immunopharmacol, 2024, 142(pt b): 113145. doi:10.1016/j.intimp.2024.113145 |
[33] | Wang BJ, Jiang TD, Qi YY, et al. AGE-RAGE axis and cardiovascular diseases: pathophysiologic mechanisms and prospects for clinical applications[J]. Cardiovasc Drugs Ther, 2024: doi: 10.1007/s10557-024-07639-0 . Online ahead of print. |
[34] | Fang Y, Zhang Y, Jia C, et al. Niaoduqing alleviates podocyte injury in high glucose model via regulating multiple targets and AGE/RAGE pathway: Network pharmacology and experimental validation[J]. Front Pharmacol, 2023, 14: 1047184. doi:10.3389/fphar.2023.1047184 |
[35] | Tufro A, Veron D. VEGF and podocytes in diabetic nephropathy[J]. Semin Nephrol, 2012, 32(4): 385-93. doi:10.1016/j.semnephrol.2012.06.010 |
[36] | Mohebi R, Liu Y, Hansen MK, et al. Associations of angiopoietin 2 and vascular endothelial growth factor-a concentrations with clinical end points[J]. Clin J Am Soc Nephrol, 2024, 19(4): 429-37. doi:10.2215/cjn.0000000000000389 |
[1] | Jinjin WANG, Wenfei CUI, Xuewei DOU, Binglei YIN, Yuqi NIU, Ling NIU, Guoli YAN. Euonymus alatus delays progression of diabetic kidney disease in mice by regulating EGFR tyrosine kinase inhibitor resistance signaling pathway [J]. Journal of Southern Medical University, 2024, 44(7): 1243-1255. |
[2] | Benju LIU, Yelei WANG, Haiwen REN, Liwen OU, Xuan DENG, Mengxin HUANG, Xin WU, Quan GONG. 3-Methyladenine alleviates early renal injury in diabetic mice by inhibiting AKT signaling [J]. Journal of Southern Medical University, 2024, 44(7): 1236-1242. |
[3] | CHEN Junjie, HUANG Chuanbing, LI Ming. Jianpi Zishen granule inhibits podocyte autophagy in systemic lupus erythematosus: a network pharmacology and clinical study [J]. Journal of Southern Medical University, 2024, 44(3): 465-473. |
[4] | WAN Lu, QIAN Yuchi, NI Wenjing, LU Yuxin, LI Wei, PAN Yan, CHEN Weidong. Linagliptin improves diabetic kidney disease in rats by promoting mitochondrial biogenesis through the AMPK/PGC-1α/TFAM pathway [J]. Journal of Southern Medical University, 2023, 43(12): 2053-2060. |
[5] | REN Yi, LU Jinying, YU Lu, LI Zongzhe, WANG Gao, YANG Jing. Carnosine protects against diabetic nephropathy in rats by activating the AKT/mTOR pathway and restoring autophagy in the renal tissue [J]. Journal of Southern Medical University, 2023, 43(11): 1965-1970. |
[6] | XING Lei, XING wenwen, GUO Hongmin. Exploring the therapeutic mechanism of Longqi Fang for diabetic kidney disease based on network pharmacology and verification in rats [J]. Journal of Southern Medical University, 2022, 42(2): 171-180. |
[7] | LI Zhiyang, LIANG Dan, XIAO Yawen, DAI Yunli, AI Fujun, DING Jing, SHI Mingjun, XIAO Ying, GUO Bing. Oxymatrine improves renal fibrosis and inflammation in diabetic rats by modulating CHK1/2 phosphorylation [J]. Journal of Southern Medical University, 2021, 41(10): 1519-1526. |
[8] | . [J]. Journal of Southern Medical University, 2018, 38(03): 296-. |
[9] | . 11R-VIVIT inhibits the expression of urokinase-type plasminogen activator receptor in podocytes [J]. Journal of Southern Medical University, 2013, 33(07): 1022-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||