Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (4): 702-710.doi: 10.12122/j.issn.1673-4254.2025.04.04
Yang YANG(), Kai WANG, Jianxiu LIU, Zhimo ZHOU, Wen JIA, Simou WU, Jinxing LI, Fang HE, Ruyue CHENG(
)
Received:
2024-10-15
Online:
2025-04-20
Published:
2025-04-28
Contact:
Ruyue CHENG
E-mail:yywishesyouhappiness@alu.scu.edu.cn;ruyuecheng1993@163.com
Supported by:
Yang YANG, Kai WANG, Jianxiu LIU, Zhimo ZHOU, Wen JIA, Simou WU, Jinxing LI, Fang HE, Ruyue CHENG. Early life Bifidobacterium bifidum BD-1 intervention alleviates hyperactivity of juvenile female rats with attention deficit hyperactivity disorder[J]. Journal of Southern Medical University, 2025, 45(4): 702-710.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.04.04
Fig.1 Effects of BD-1 intervention on hyperactivity in SHRs. A: Time moving in the OFT.B: Distance moved in the OFT. C: Representative trace maps of the rats. (n=8 in WKY group, n=6 in SHR group, n=6 in SHR-BD-1 group). **P<0.01, ****P<0.0001.
Fig.2 Effects of BD-1 intervention on expressions of DAT and Th in the striatum of the rats. A: Immunofluorescence staining of the striatum. B: IOD of DAT in the striatum. C: IOD of Th in the striatum. *P<0.05.
Fig.3 Effects of BD-1 intervention on the number of activated microglia in the prefrontal cortex and Treg cells in the mesenteric lymph nodes (MLN), spleen and blood of the rats. A: Immunofluorescence staining and calculation of activated microglia in the prefrontal cortex. B: Number of Treg cells/CD4+ cells (%) in the MLN, spleen and blood (n=8 in WKY group, n=6 in SHR group, n=6 in SHR-BD-1 group). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
Fig.4 Effects of BD-1 intervention on gut microbiota diversity in the rats. A: α diversity and principal coordinate analysis map of β diversity of gut microbiota at 3 weeks (n=5). B: α diversity and principal coordinate analysis map of β diversity of the gut microbiota at 7 weeks (n=8 in WKY group, n=6 in SHR group, n=6 in SHR-BD-1 group). **P<0.01, ***P<0.001, ****P<0.0001.
1 | 李 希, 陈向坚, 陈竞建, 等. 注意缺陷多动障碍儿童肠道菌群特点及与行为问题的相关性研究[J]. 中国微生态学杂志, 2024, 36(3): 313-6. |
2 | 张雪宁, 谢振中, 庞玉兰. 注意缺陷多动障碍患儿肠道细菌构成特点及临床意义[J]. 中国妇幼保健, 2023, 38(14): 2593-6. |
3 | Ahrens AP, Hyötyläinen T, Petrone JR, et al. Infant microbes and metabolites point to childhood neurodevelopmental disorders[J]. Cell, 2024, 187(8): 1853-73.e15. |
4 | Pärtty A, Kalliomäki M, Wacklin P, et al. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial[J]. Pediatr Res, 2015, 77(6): 823-8. |
5 | Hashemi A, Villa CR, Comelli EM. Probiotics in early life: a preventative and treatment approach[J]. Food Funct, 2016, 7(4): 1752-68. |
6 | Sagvolden T, Metzger MA, Schiørbeck HK, et al. The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants[J]. Behav Neural Biol, 1992, 58(2): 103-12. |
7 | David Jentsch J. Impaired visuospatial divided attention in the spontaneously hypertensive rat[J]. Behav Brain Res, 2005, 157(2): 323-30. |
8 | Fang ZL, Shen GH, Amin N, et al. Effects of neuroinflammation and autophagy on the structure of the blood-brain barrier in ADHD model[J]. Neuroscience, 2023, 530: 17-25. |
9 | Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder[J]. Pharmacol Biochem Behav, 2019, 182: 22-34. |
10 | Yin XD, Liu WC, Feng HH, et al. Bifidobacterium animalis subsp. lactis A6 attenuates hippocampal damage and memory impairments in an ADHD rat model[J]. Food Funct, 2024, 15(5): 2668-78. |
11 | Raony Í, Domith I, Lourenco MV, et al. Trace amine-associated receptor 1 modulates motor hyperactivity, cognition, and anxiety-like behavior in an animal model of ADHD[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2022, 117: 110555. |
12 | Ramtekkar UP, Reiersen AM, Todorov AA, et al. Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: implications for DSM-V and ICD-11[J]. J Am Acad Child Adolesc Psychiatry, 2010, 49(3): 217-28.e1-3. |
13 | Hasson R, Fine JG. Gender differences among children with ADHD on continuous performance tests: a meta-analytic review[J]. J Atten Disord, 2012, 16(3): 190-8. |
14 | Shobeiri P, Kalantari A, Teixeira AL, et al. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders[J]. Biol Sex Differ, 2022, 13(1): 12. |
15 | Peng CR, Li JX, Miao ZH, et al. Early life administration of Bifidobacterium bifidum BD-1 alleviates long-term colitis by remodeling the gut microbiota and promoting intestinal barrier development[J]. Front Microbiol, 2022, 13: 916824. |
16 | 许晓林, 王斯栌, 陈 菲, 等. 利用2’-岩藻糖基乳糖生长的两歧双歧杆菌BD-1免疫调节功能评价[J]. 中国微生态学杂志, 2024, 36(7): 745-52, 760. |
17 | Rucklidge JJ. Gender differences in attention-deficit/hyperactivity disorder[J]. Psychiatr Clin North Am, 2010, 33(2): 357-73. |
18 | Prehn-Kristensen A, Zimmermann A, Tittmann L, et al. Reduced microbiome alpha diversity in young patients with ADHD[J]. PLoS One, 2018, 13(7): e0200728. |
19 | Wang N, Wang HB, Bai Y, et al. Metagenomic analysis reveals difference of gut microbiota in ADHD[J]. J Atten Disord, 2024, 28(5): 872-9. |
20 | Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease[J]. Microorganisms, 2020, 8(11): 1715. |
21 | 张 珊, 万 林, 孙于林, 等. 注意缺陷多动障碍患儿的肠道菌群特征[J]. 临床儿科杂志, 2020, 38(4): 264-8. |
22 | Zhu YQ, Chen BR, Zhang XY, et al. Exploration of the Muribaculaceae family in the gut microbiota: diversity, metabolism, and function[J]. Nutrients, 2024, 16(16): 2660. |
23 | Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity[J]. Nat Rev Immunol, 2024, 24(8): 577-95. |
24 | Koontanatechanon A, Wongphatcharachai M, Nonthabenjawan N, et al. The effects of increasing dietary fat on serum lipid profile and modification of gut microbiome in C57BL/6N mice[J]. J Oleo Sci, 2022, 71(7): 1039-49. |
25 | Mittleman BB, Castellanos FX, Jacobsen LK, et al. Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease[J]. J Immunol, 1997, 159(6): 2994-9. |
26 | Donfrancesco R, Nativio P, Di Benedetto A, et al. Anti-yo antibodies in children with ADHD: first results about serum cytokines[J]. J Atten Disord, 2020, 24(11): 1497-502. |
27 | Elsadek AE, Al-Shokary AH, Abdelghani WE, et al. Serum levels of interleukin-6 and tumor necrosis factor alpha in children with attention-deficit hyperactivity disorder[J]. J Pediatr Neurosci, 2020, 15(4): 402-8. |
28 | Barbi J, Pardoll D, Pan F. Treg functional stability and its responsiveness to the microenvironment[J]. Immunol Rev, 2014, 259(1): 115-39. |
29 | Gao X, Tang YR, Kong LL, et al. Treg cell: Critical role of regulatory T-cells in depression[J]. Pharmacol Res, 2023, 195: 106893. |
30 | Kessi M, Duan H, Xiong J, et al. Attention-deficit/hyperactive disorder updates[J]. Front Mol Neurosci, 2022, 15: 925049. |
31 | Kurzina NP, Volnova AB, Aristova IY, et al. A new paradigm for training hyperactive dopamine transporter knockout rats: influence of novel stimuli on object recognition[J]. Front Behav Neurosci, 2021, 15: 654469. |
32 | Colette Daubner S, Le T, Wang SZ. Tyrosine hydroxylase and regulation of dopamine synthesis[J]. Arch Biochem Biophys, 2011, 508(1): 1-12. |
33 | Leo D, Sorrentino E, Volpicelli F, et al. Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD[J]. Neurosci Biobehav Rev, 2003, 27(7): 661-9. |
34 | Singh S, Mishra A, Srivastava N, et al. Acetyl-L-carnitine via upegulating dopamine D1 receptor and attenuating microglial activation prevents neuronal loss and improves memory functions in parkinsonian rats[J]. Mol Neurobiol, 2018, 55(1): 583-602. |
[1] | Linyu XIAO, Ting DUAN, Yongsheng XIA, Yue CHEN, Yang SUN, Yibo XU, Lei XU, Xingzhou YAN, Jianguo HU. Linarin inhibits microglia activation-mediated neuroinflammation and neuronal apoptosis in mouse spinal cord injury by inhibiting the TLR4/NF-κB pathway [J]. Journal of Southern Medical University, 2024, 44(8): 1589-1598. |
[2] | GUI Jianjun, SUN Xiaodong, WEN Shu, LIU Xin, QIN Bingqing, SANG Ming. Resveratrol protects dopaminergic neurons in a mouse model of Parkinson's disease by regulating the gut-brain axis via inhibiting the TLR4 signaling pathway [J]. Journal of Southern Medical University, 2024, 44(2): 270-279. |
[3] | Chengcheng JIANG, Yangyang LI, Kexin DUAN, Tingting ZHAN, Zilong CHEN, Yongxue WANG, Rui ZHAO, Caiyun MA, Yu GUO, Changqing LIU. Parkin deletion affects PINK1/Parkin-mediated mitochondrial autophagy to exacerbate neuroinflammation and accelerate progression of Parkinson's disease in mice [J]. Journal of Southern Medical University, 2024, 44(12): 2359-2366. |
[4] | ZHANG Meng, ZHANG Yuanyuan, NIU Mengzhu, ZHU Yue, TONG Shiyi, KOU Xianjuan. Dihydromyricetin alleviates pyroptosis and necroptosis in mice with MPTP-induced chronic Parkinson's disease by inducing autophagy [J]. Journal of Southern Medical University, 2023, 43(8): 1268-1278. |
[5] | ZHANG Jiafa, YANG Canhong, ZHANG Shufen, CAO Tingting, PENG Rui, GUO Weihong, YAN Yuping, XIE Shuting, PENG Xiaojia, LÜ Tianming, HUANG Tianrong. Sulforaphane reverses Aβ fiber-mediated M1 type microglia polarization and neuroinflammation-mediated necroptosis of neural stem cells by downregulating the MAPK/NF-κB signaling pathways [J]. Journal of Southern Medical University, 2023, 43(12): 2132-2138. |
[6] | . Macrophage migration inhibitory factor meditates MPP+/MPTP-induced NLRP3 inflammasome activation in microglia cells [J]. Journal of Southern Medical University, 2021, 41(7): 972-979. |
[7] | . Choline improves lipopolysaccharide-induced central nervous system inflammatory response and cognitive dysfunction in mice [J]. Journal of Southern Medical University, 2017, 37(05): 600-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||