Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (1): 52-58.doi: 10.12122/j.issn.1673-4254.2025.01.07
Previous Articles Next Articles
Lihong CHEN1,3(), Huilin XIE1, Xia HUANG1, Tongfeng LUO1, Jing GUO1, Chunmeng LIN1, Xueyan LIU1, Lishuo SHI2, Sanqing JIN1,3(
)
Received:
2024-09-26
Online:
2025-01-20
Published:
2025-01-20
Contact:
Sanqing JIN
E-mail:chenlihn@mail.sysu.edu.cn;jinsq@mail.sysu.edu.cn
Lihong CHEN, Huilin XIE, Xia HUANG, Tongfeng LUO, Jing GUO, Chunmeng LIN, Xueyan LIU, Lishuo SHI, Sanqing JIN. Correlation between the Observer's Assessment of Alertness/Sedation score and bispectral index in patients receiving propofol titration during general anesthesia induction[J]. Journal of Southern Medical University, 2025, 45(1): 52-58.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.01.07
Characteristics | Result |
---|---|
Age (year) | 43.52±11.25 |
Gender | |
Male | 47 (52.2%) |
Female | 43(47.8%) |
Body weight (kg) | 62.48±10.47 |
Height (m) | 1.65±0.08 |
BMI (kg·m-2) | 22.80±2.75 |
Hb (g·L-1) | 130.33±17.85 |
Alb (g·L-1) | 41.18±3.17 |
Dose of remifentanil (μg) | 132.36±22.16 |
Dose of rocuronium (mg) | 37.49±6.28 |
ASA Grade | |
1 | 5 (5.56%) |
2 | 85 (94.44%) |
NYHA grading | |
Ⅰ | 30 (33.33%) |
Ⅱ | 60 (66.67%) |
Tab.1 General characteristics of the patients (n=90)
Characteristics | Result |
---|---|
Age (year) | 43.52±11.25 |
Gender | |
Male | 47 (52.2%) |
Female | 43(47.8%) |
Body weight (kg) | 62.48±10.47 |
Height (m) | 1.65±0.08 |
BMI (kg·m-2) | 22.80±2.75 |
Hb (g·L-1) | 130.33±17.85 |
Alb (g·L-1) | 41.18±3.17 |
Dose of remifentanil (μg) | 132.36±22.16 |
Dose of rocuronium (mg) | 37.49±6.28 |
ASA Grade | |
1 | 5 (5.56%) |
2 | 85 (94.44%) |
NYHA grading | |
Ⅰ | 30 (33.33%) |
Ⅱ | 60 (66.67%) |
OAAS score | BIS value | Titration time (s) | Dose of propofol (mg/kg) | MAP (mmHg) | HR (bpm) |
---|---|---|---|---|---|
5 | 96[94, 97] | - | - | 99.14±11.23 | 80.37±13.32 |
4 | 93[87, 97] | 120±34 | 1.00±0.27 | 91.66±10.92 | 79.74±11.34 |
3 | 82[80, 88] | 163±39 | 1.35±0.32 | 87.01±10.87 | 78.77±10.44 |
2 | 79[74, 82] | 188±45 | 1.56±0.37 | 83.60±10.85 | 78.64±10.52 |
1 | 76[66, 81] | 206±49 | 1.70±0.41 | 82.39±11.25 | 77.78±10.63 |
Tab.2 Parameters of the patients when OAAS score reaches different ratings (n=90)
OAAS score | BIS value | Titration time (s) | Dose of propofol (mg/kg) | MAP (mmHg) | HR (bpm) |
---|---|---|---|---|---|
5 | 96[94, 97] | - | - | 99.14±11.23 | 80.37±13.32 |
4 | 93[87, 97] | 120±34 | 1.00±0.27 | 91.66±10.92 | 79.74±11.34 |
3 | 82[80, 88] | 163±39 | 1.35±0.32 | 87.01±10.87 | 78.77±10.44 |
2 | 79[74, 82] | 188±45 | 1.56±0.37 | 83.60±10.85 | 78.64±10.52 |
1 | 76[66, 81] | 206±49 | 1.70±0.41 | 82.39±11.25 | 77.78±10.63 |
1 | Sahinovic MM, Struys MMRF, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of propofol[J]. Clin Pharmacokinet, 2018, 57(12): 1539-58. |
2 | Saugel B, Bebert EJ, Briesenick L, et al. Mechanisms contributing to hypotension after anesthetic induction with sufentanil, propofol, and rocuronium: a prospective observational study[J]. J Clin Monit Comput, 2022, 36(2): 341-7. |
3 | Fassl J, High KM, Stephenson ER, et al. The intravenous anesthetic propofol inhibits human L-type calcium channels by enhancing voltage-dependent inactivation[J]. J Clin Pharmacol, 2011, 51(5): 719-30. |
4 | Chen LH, Lu K, Luo TF, et al. Observer's Assessment of Alertness/Sedation-based titration reduces propofol consumption and incidence of hypotension during general anesthesia induction: a randomized controlled trial[J]. Sci Prog, 2021, 104(4): 368504211052354. |
5 | Barakat AR, Sutcliffe N, Schwab M. Effect site concentration during propofol TCI sedation: a comparison of sedation score with two pharmacokinetic models[J]. Anaesthesia, 2007, 62(7): 661-6. |
6 | Chernik DA, Gillings D, Laine H, et al. Validity and reliability of the Observer's Assessment of Alertness/Sedation Scale: study with intravenous midazolam[J]. J Clin Psychopharmacol, 1990, 10(4): 244-51. |
7 | Friedberg BL. Can friedberg's triad solve persistent anesthesia problems? over-medication, pain management, postoperative nausea and vomiting[J]. Plast Reconstr Surg Glob Open, 2017, 5(10): e1527. |
8 | Shajahan MS, Agrawal S, Singla D. Comparison between patient state index, bispectral index, and clinical parameters for propofol induction in Indian patients: a prospective study[J]. J Anaesthesiol Clin Pharmacol, 2023, 39(4): 544-9. |
9 | Rüsch D, Arndt C, Eberhart L, et al. Bispectral index to guide induction of anesthesia: a randomized controlled study[J]. BMC Anesthesiol, 2018, 18(1): 66. |
10 | Gürses E, Sungurtekin H, Tomatir E, et al. Assessing propofol induction of anesthesia dose using bispectral index analysis[J]. Anesth Analg, 2004, 98(1): 128-31. |
11 | Xu GP, Qiao NN, Pan YY, et al. The appropriate dose of propofol for anesthesia induction in morbidly obese patients[J]. Ann Palliat Med, 2020, 9(4): 1921-7. |
12 | Zeng YJ, Cao S, Chen MH, et al. GABRA1 and GABRB2 polymorphisms are associated with propofol susceptibility[J]. Pharmgenomics Pers Med, 2022, 15: 105-17. |
13 | Xiang Y, Li YH. Comparison of 1.5% lidocaine and 0.5% ropivacaine epidural anesthesia combined with propofol general anesthesia guided by bispectral index[J]. J Zhejiang Univ Sci B, 2007, 8(6): 428-34. |
14 | Liu N, Chazot T, Genty A, et al. Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control: a prospective, randomized, multicenter study[J]. Anesthesiology, 2006, 104(4): 686-95. |
15 | Naevra MCJ, Romundstad L, Aasheim A, et al. Monitoring the awake and anesthetized unconscious states using bispectral index and electroencephalographic connectivity measures[J]. Clin EEG Neurosci, 2023, 54(3): 273-80. |
16 | Avidan MS, Zhang LN, Burnside BA, et al. Anesthesia awareness and the bispectral index[J]. N Engl J Med, 2008, 358(11): 1097-108. |
17 | Shander A, Lobel GP, Mathews DM. Brain monitoring and the depth of anesthesia: another goldilocks dilemma[J]. Anesth Analg, 2018, 126(2): 705-9. |
18 | Pilge S, Zanner R, Schneider G, et al. Time delay of index calculation: analysis of cerebral state, bispectral, and narcotrend indices[J]. Anesthesiology, 2006, 104(3): 488-94. |
19 | de Wit F, van Vliet AL, de Wilde RB, et al. The effect of propofol on haemodynamics: cardiac output, venous return, mean systemic filling pressure, and vascular resistances[J]. Br J Anaesth, 2016, 116(6): 784-9. |
20 | Goodchild CS, Serrao JM. Propofol-induced cardiovascular depression: science and art[J]. Br J Anaesth, 2015, 115(4): 641-2. |
21 | Ahuja S, Mascha EJ, Yang DS, et al. Associations of intraoperative radial arterial systolic, diastolic, mean, and pulse pressures with myocardial and acute kidney injury after noncardiac surgery: a retrospective cohort analysis[J]. Anesthesiology, 2020, 132(2): 291-306. |
22 | Jor O, Maca J, Koutna J, et al. Hypotension after induction of general anesthesia: occurrence, risk factors, and therapy. A prospective multicentre observational study[J]. J Anesth, 2018, 32(5): 673-80. |
23 | Gregory A, Stapelfeldt WH, Khanna AK, et al. Intraoperative hypotension is associated with adverse clinical outcomes after noncardiac surgery[J]. Anesth Analg, 2021, 132(6): 1654-65. |
24 | Aktas Yildirim S, Sarikaya ZT, Dogan L, et al. Arterial elastance: a predictor of hypotension due to anesthesia induction[J]. J Clin Med, 2023, 12(9): 3155. |
25 | Mathis MR, Naik BI, Freundlich RE, et al. Preoperative risk and the association between hypotension and postoperative acute kidney injury[J]. Anesthesiology, 2020, 132(3): 461-75. |
26 | Sun LY, Chung AM, Farkouh ME, et al. Defining an intraoperative hypotension threshold in association with stroke in cardiac surgery[J]. Anesthesiology, 2018, 129(3): 440-7. |
27 | Hu YQ, Lim A. MAP 65-is it enough[J]?. Curr Opin Anaesthesiol, 2022, 35(2): 242-7. |
28 | Onuigbo MA. Perioperative acute kidney injury: prevention rather than cure[J]. JAMA Surg, 2016, 151(8): 782-3. |
29 | Gottschalk A, Van Aken H, Zenz M, et al. Is anesthesia dangerous?[J]. Dtsch Arztebl Int, 2011, 108(27): 469-74. |
30 | Madanu R, Rahman F, Abbod MF, et al. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition[J]. Math Biosci Eng, 2021, 18(5): 5047-68. |
31 | Sessler DI, Sigl JC, Kelley SD, et al. Hospital stay and mortality are increased in patients having a "triple low" of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia[J]. Anesthesiology, 2012, 116(6): 1195-203. |
32 | Schick A, Driver B, Moore JC, et al. Randomized clinical trial comparing procedural Amnesia and respiratory depression between moderate and deep sedation with propofol in the emergency department[J]. Acad Emerg Med, 2019, 26(4): 364-74. |
33 | Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery[J]. Cochrane Database Syst Rev, 2014(6): CD003843. |
34 | Pérez-Otal B, Aragón-Benedí C, Pascual-Bellosta A, et al. Neuromonitoring depth of anesthesia and its association with postoperative delirium[J]. Sci Rep, 2022, 12(1): 12703. |
35 | Singh H. Bispectral index (BIS) monitoring during propofol-induced sedation and anaesthesia[J]. Eur J Anaesthesiol, 1999, 16(1): 31-6. |
36 | Myles PS, Leslie K, McNeil J, et al. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial[J]. Lancet, 2004, 363(9423): 1757-63. |
37 | Avidan MS, Jacobsohn E, Glick D, et al. Prevention of intraoperative awareness in a high-risk surgical population[J]. N Engl J Med, 2011, 365(7): 591-600. |
38 | Petrun AM, Kamenik M. Bispectral index-guided induction of general anaesthesia in patients undergoing major abdominal surgery using propofol or etomidate: a double-blind, randomized, clinical trial[J]. Br J Anaesth, 2013, 110(3): 388-96. |
39 | 冯 艺, 许军军, 编写组中华医学会麻醉学分会中国全凭静脉麻醉临床实践指南版. 中国全凭静脉麻醉临床实践指南(2024版)[J]. 中华麻醉学杂志, 2024, 44(9): 1030-49. |
40 | Van Hese L, Theys T, Absalom AR, et al. Comparison of predicted and real propofol and remifentanil concentrations in plasma and brain tissue during target-controlled infusion: a prospective observational study[J]. Anaesthesia, 2020, 75(12): 1626-34. |
41 | Kateliya R, Madhukant, Dubey M, et al. Comparison of recovery profiles in target-controlled infusions (TCI) versus manually controlled infusions for total intravenous anesthesia (TIVA) in laparoscopic surgeries. A randomized controlled trial[J]. J Anaesthesiol Clin Pharmacol, 2023, 39(2): 258-63. |
42 | Patel B, Patel H, Shah D, et al. Control strategy with multivariable fault tolerance module for automatic intravenous anesthesia[J]. Biomed Eng Lett, 2020, 10(4): 555-78. |
43 | Patel B, Patel H, Vachhrajani P, et al. Adaptive Smith predictor controller for total intravenous anesthesia automation[J]. Biomed Eng Lett, 2019, 9(1): 127-44. |
44 | Ferreira AL, Mendes JG, Nunes CS, et al. Evaluation of Bispectral Index time delay in response to anesthesia induction: an observational study[J]. Braz J Anesthesiol, 2019, 69(4): 377-82. |
45 | Lim TW, Choi YH, Kim JY, et al. Efficacy of the bispectral index and Observer's Assessment of Alertness/Sedation Scale in monitoring sedation during spinal anesthesia: a randomized clinical trial[J]. J Int Med Res, 2020, 48(4): 300060519893165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||