Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (6): 1024-1032.doi: 10.12122/j.issn.1673-4254.2024.06.02
Wei ZHANG1,2(), Mengmeng DENG1, Yao ZENG1,2, Chenfei LIU1, Feifei SHANG2, Wenhao XU1, Haoyi JIANG2, Fengchao WANG1, Yanqing YANG1,2(
)
Received:
2024-02-25
Online:
2024-06-20
Published:
2024-07-01
Contact:
Yanqing YANG
E-mail:zw13085009617@163.com;yyqing@mail.ustc.edu.cn
Supported by:
Wei ZHANG, Mengmeng DENG, Yao ZENG, Chenfei LIU, Feifei SHANG, Wenhao XU, Haoyi JIANG, Fengchao WANG, Yanqing YANG. 2,6-dimethoxy-1,4-benzoquinone alleviates septic shock in mice by inhibiting NLRP3 inflammasome activation[J]. Journal of Southern Medical University, 2024, 44(6): 1024-1032.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.06.02
Fig.1 DMQ suppresses Nigericin-induced NLRP3 inflammasome activation in BMDM and THP-1 cells. A: Western blotting of cleaved IL-1β and caspase-1 (p20) in the culture supernatants, pro-IL-1β, Pro-caspase-1 (Pro-casp1) and β-actin in the cell lysate of BMDM cells. B-D: ELISA of IL-1β, TNF-α and IL-6 in the culture supernatant, respectively. E: Western blotting of cleaved caspase-1 (p20) in the culture supernatant and pro-caspase-1 (Pro-casp1) and β-actin in the cell lysate of THP-1 cells. F: ELISA of IL-1β in the culture supernatant of THP-1 cells. *P<0.05, **P<0.01, ***P<0.001.
Fig.2 DMQ inhibits NLRP3 inflammasome activation in BMDM induced by ATP and MSU. A: Western blotting of IL-1β and p20 in the supernatant and Pro-IL-1β, Pro-casp1 and β-actin in cell lysates of BMDM induced by ATP. B: ELISA of IL-1β in the culture supernatant of BMDM induced by ATP. C: ELISA of IL-1β in the culture supernatant of BMDM induced by MSU. D: Western blotting of IL-1β and p20 in the supernatant and Pro-IL-1β, Pro-casp1 and β-actin in cell lysates of BMDM induced by MSU. *P<0.05, **P<0.01, ***P<0.001.
Fig.4 DMQ does not inhibit AIM2 inflammasome activation in BMDM. A: Western blotting of IL-1β and p20 in the supernatant and Pro-IL-1β, Pro-casp1 and β-actin in cell lysates of BMDM. B-E:Quantitative analysis of the expressions of IL-1β (B), p20 (C), pro-IL-1β (D), and Pro-casp1 (E) in BMDM. F: ELISA of IL-1β in the culture supernatant of BMDM. *P<0.05, **P<0.01, ***P<0.001.
Fig.5 DMQ blocks ASC-NLRP3 interaction. A: Western blotting of NLRP3 and NEK7 in immunoprecipitation (IP) and in cell lysates (Input) of BMDM. B, C: Quantitative analysis of the expressions of NLRP3 (B) and NEK7 (C) in BMDM. D: Western blotting of NLRP3 and ASC in IP and in cell lysates (Input) of BMDM. E, F: Quantitative analysis of the expressions of NLRP3 (E) and ASC (F) in BMDM. ***P<0.001.
Fig.6 DMQ alleviates LPS-induced septic shock in mice. A, B: Serum leveld of IL-1β (A) and TNF-α (B) determined with ELISA. C, D: Levels of IL-1β (C) and TNF-α (D) in peritoneal lavage fluid determined with ELISA. E: Survive curve of the mice within 36 h after LPS injection. n=6, *P<0.05, **P<0.01. ***P<0.001.
1 | Paik S, Kim JK, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation[J]. Cell Mol Immunol, 2021, 18: 1141-60. |
2 | Toldo S, Mezzaroma E, Buckley LF, et al. Targeting the NLRP3 inflammasome in cardiovascular diseases[J]. Pharmacol Ther, 2022, 236: 108053. |
3 | Pan HM, Jian YT, Wang FJ, et al. NLRP3 and gut microbiota homeostasis: progress in research[J]. Cells, 2022, 11(23): 3758. |
4 | Palumbo L, Carinci M, Guarino A, et al. The NLRP3 inflammasome in neurodegenerative disorders: insights from epileptic models[J]. Biomedicines, 2023, 11(10): 2825. |
5 | 马婷婷, 马 骁. NLRP3炎症体在肝脏疾病中的作用及研究进展[J]. 临床消化病杂志, 2022, 34(5): 395-9. |
6 | Hurtado-Navarro L, Cuenca-Zamora EJ, Zamora L, et al. NLRP3 inflammasome activation and symptom burden in KRAS-mutated CMML patients is reverted by IL-1 blocking therapy[J]. Cell Rep Med, 2023, 4(12): 101329. |
7 | Takahashi M. NLRP3 inflammasome as a key driver of vascular disease[J]. Cardiovasc Res, 2022, 118(2): 372-85. |
8 | Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans[J]. Semin Immunol, 2013, 25(6): 469-84. |
9 | Boros LG, Nichelatti M, Shoenfeld Y. Fermented wheat germ extract (Avemar) in the treatment of cancer and autoimmune diseases[J]. Ann N Y Acad Sci, 2005, 1051: 529-42. |
10 | Telekes A, Resetar A, Balint G, et al. Fermented wheat germ extract (avemar) inhibits adjuvant arthritis[J]. Ann N Y Acad Sci, 2007, 1110: 348-61. |
11 | Saiko P, Ozsvar-Kozma M, Madlener S, et al. Avemar, a nontoxic fermented wheat germ extract, induces apoptosis and inhibits ribonucleotide reductase in human HL-60 promyelocytic leukemia cells[J]. Cancer Lett, 2007, 250(2): 323-8. |
12 | Otto C, Hahlbrock T, Eich K, et al. Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract[J]. BMC Complement Altern Med, 2016, 16: 160. |
13 | Sanchez-Cruz P, Garcia C, Alegria AE. Role of quinones in the ascorbate reduction rates of S-nitrosoglutathione[J]. Free Radic Biol Med, 2010, 49(9): 1387-94. |
14 | Gómez-Toribio V, García-Martín AB, Martínez MJ, et al. Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal[J]. Appl Environ Microbiol, 2009, 75(12): 3954-62. |
15 | Yoo A, Jang YJ, Ahn J, et al. 2, 6-Dimethoxy-1, 4-benzoquinone increases skeletal muscle mass and performance by regulating AKT/mTOR signaling and mitochondrial function[J]. Phytomedicine, 2021, 91: 153658. |
16 | Kamiya T, Tanimoto Y, Fujii N, et al. 2, 6-Dimethoxy-1, 4-benzoquinone, isolation and identification of anti-carcinogenic, anti-mutagenic and anti-inflammatory component from the juice of Vitis coignetiae [J]. Food Chem Toxicol, 2018, 122: 172-80. |
17 | Arimoto-Kobayashi S, Sasaki K, Hida R, et al. Chemopreventive effects and anti-tumorigenic mechanisms of 2, 6-dimethoxy-1, 4-benzoquinone, a constituent of Vitis coignetiae Pulliat (crimson glory vine, known as yamabudo in Japan), toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice[J]. Food Chem Toxicol, 2021, 154: 112319. |
18 | Zu XY, Ma XL, Xie XM, et al. 2, 6-DMBQ is a novel mTOR inhibitor that reduces gastric cancer growth in vitro and in vivo [J]. J Exp Clin Cancer Res, 2020, 39(1): 107. |
19 | Son HJ, Jang YJ, Jung CH, et al. 2, 6-dimethoxy-1, 4-benzoquinone inhibits 3T3-L1 adipocyte differentiation via regulation of AMPK and mTORC1[J]. Planta Med, 2019, 85(3): 210-6. |
20 | Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301-16. |
21 | Akbal A, Dernst A, Lovotti M, et al. How location and cellular signaling combine to activate the NLRP3 inflammasome[J]. Cell Mol Immunol, 2022, 19(11): 1201-14. |
22 | Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS[J]. Nat Immunol, 2019, 20: 527-33. |
23 | Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis[J]. Immunol Rev, 2020, 294(1): 48-62. |
24 | Werner LE, Wagner U. Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation[J]. Front Physiol, 2022, 13: 1078569. |
25 | Zhu H, Jian ZH, Zhong Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition[J]. Front Immunol, 2021, 12: 714943. |
26 | Fusco R, Siracusa R, Genovese T, et al. Focus on the role of NLRP3 inflammasome in diseases[J]. Int J Mol Sci, 2020, 21(12): 4223. |
27 | Wang LX, Ren W, Wu QJ, et al. NLRP3 inflammasome activation: a therapeutic target for cerebral ischemia-reperfusion injury[J]. Front Mol Neurosci, 2022, 15: 847440. |
28 | Chai YH, Cai YW, Fu Y, et al. Salidroside ameliorates depression by suppressing NLRP3-mediated pyroptosis via P2X7/NF-κB/NLRP3 signaling pathway[J]. Front Pharmacol, 2022, 13: 812362. |
29 | Han JW, Shim DW, Shin WY, et al. Anti-inflammatory effect of emodin via attenuation of NLRP3 inflammasome activation[J]. Int J Mol Sci, 2015, 16(4): 8102-9. |
30 | Schmid-Burgk JL, Gaidt MM, Schmidt T, et al. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells[J]. Eur J Immunol, 2015, 45(10): 2911-7. |
31 | Cridland JA, Curley EZ, Wykes MN, et al. The mammalian PYHIN gene family: phylogeny, evolution and expression[J]. BMC Evol Biol, 2012, 12: 140. |
32 | Wei ZY, Zhan XY, Ding KX, et al. Dihydrotanshinone I specifically inhibits NLRP3 inflammasome activation and protects against septic shock in vivo [J]. Front Pharmacol, 2021, 12: 750815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||