Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (11): 2256-2264.doi: 10.12122/j.issn.1673-4254.2024.11.24
Fenxia LI(), Haosheng LIN, Yilin LI, Wenqian ZHU, Yuanjie SUN, Yuan HUANG, Yuwen QIU, Xia QIN, Qingxian CHANG(
)
Received:
2024-05-27
Online:
2024-11-20
Published:
2024-11-29
Contact:
Qingxian CHANG
E-mail:lifenxia123@qq.com;1614268071@qq.com
Fenxia LI, Haosheng LIN, Yilin LI, Wenqian ZHU, Yuanjie SUN, Yuan HUANG, Yuwen QIU, Xia QIN, Qingxian CHANG. Differential expression profile of miRNAs in maternal amniotic fluid exosomes in fetuses with isolated ventriculomegaly[J]. Journal of Southern Medical University, 2024, 44(11): 2256-2264.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.11.24
Name | Sequence |
---|---|
miR-122-5p | 3' gtT-TGTG-GTAACAGTGTGAGGt 5' |
AKT3 3'UTR-WT | 5' acATACACGCA-AAT-ACACTCCa 3' |
AKT3 3'UTR-mut | 5' actTtCtCcCt-AtT-tCtCaCgA 3' |
CCDC88C 3'UTR-WT | 5' agAAGATGAGTTGTCACACTCCc 3' |
CCDC88C 3'UTR-mut | 5' agtAGATGAGaTcTgAgAgTgCg 3' |
Tab.1 Synthesized sequences of miR-122, ATK3, and CCDC88C for dual luciferase reporter assays
Name | Sequence |
---|---|
miR-122-5p | 3' gtT-TGTG-GTAACAGTGTGAGGt 5' |
AKT3 3'UTR-WT | 5' acATACACGCA-AAT-ACACTCCa 3' |
AKT3 3'UTR-mut | 5' actTtCtCcCt-AtT-tCtCaCgA 3' |
CCDC88C 3'UTR-WT | 5' agAAGATGAGTTGTCACACTCCc 3' |
CCDC88C 3'UTR-mut | 5' agtAGATGAGaTcTgAgAgTgCg 3' |
Fig.1 Identification of exosomes in maternal amniotic fluid. A: Exosome morphology under transmission electron microscope. B: Protein expressions of exosome markers CD9, CD63, CD81 and TSG101 detected by Western blotting. C: Particle size of the exosomes.
Fig.2 Heat map of the differentially expressed miRNAs between ventriculomegaly and control groups. Red and blue indicates up-regulated and down-regulated miRNAs, respectively.
Fig.4 Result of 3'UTR luciferase report system for assessing interactions between miRNA-122-5p and its predicted target genes. A: Luciferase assays with AKT3 3'UTR-WT/mut. B: Luciferase assays with CCDC88C 3'UTR-WT/mut.
1 | Gaglioti P, Oberto M, Todros T. The significance of fetal ventriculomegaly: etiology, short- and long-term outcomes[J]. Prenat Diagn, 2009, 29(4): 381-8. |
2 | Griffiths PD, Reeves MJ, Morris JE, et al. A prospective study of fetuses with isolated ventriculomegaly investigated by antenatal sonography and in utero MR imaging[J]. AJNR Am J Neuroradiol, 2010, 31(1): 106-11. |
3 | Salomon LJ, Bernard JP, Ville Y. Reference ranges for fetal ventricular width: a non-normal approach[J]. Ultrasound Obstet Gynecol, 2007, 30(1): 61-6. |
4 | 彭奕贤, 黄莉萍, 黎 静, 等. 孤立性侧脑室扩张胎儿的结局及其影像学随访的结果[J]. 中华妇产科杂志, 2018, 53(5): 294-8. |
5 | McKechnie L, Vasudevan C, Levene M. Neonatal outcome of congenital ventriculomegaly[J]. Semin Fetal Neonatal Med, 2012, 17(5): 301-7. |
6 | van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-28. |
7 | Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-9. |
8 | Ghafourian M, Mahdavi R, Akbari Jonoush Z, et al. The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets[J]. Cell Commun Signal, 2022, 20(1): 51. |
9 | Bardanzellu F, Fanos V. The choice of amniotic fluid in metabolomics for the monitoring of fetus health - update[J]. Expert Rev Proteomics, 2019, 16(6): 487-99. |
10 | Zwemer LM, Bianchi DW. The amniotic fluid transcriptome as a guide to understanding fetal disease[J]. Cold Spring Harb Perspect Med, 2015, 5(4): a023101. |
11 | Ebert B, Rai AJ. Isolation and characterization of amniotic fluid-derived extracellular vesicles for biomarker discovery[J]. Methods Mol Biol, 2019, 1885: 287-94. |
12 | 丁凯泽, 余 蕾, 黄 智, 等. 唐氏综合征胎儿羊水外泌体miRNA差异表达谱分析[J]. 南方医科大学学报, 2022, 42(2): 293-9. |
13 | 柯买春, 王小中, 袁素珍, 等. 羊水外泌体21号染色体源性miRNAs检测在唐氏综合征产前诊断中的意义[J]. 江西医药, 2022, 57(9): 1270-5. |
14 | Xie JT, Zhou Y, Gao WZ, et al. The relationship between amniotic fluid miRNAs and congenital obstructive nephropathy[J]. Am J Transl Res, 2017, 9(4): 1754-63. |
15 | Li JZ, Fu Y, Liu QS, et al. Multiomics-based study of amniotic fluid small extracellular vesicles identified Moesin as a biomarker for antenatal hydronephrosis[J]. Clin Transl Med, 2023, 13(8): e1360. |
16 | Yang HN, Yang SP, Shen HL, et al. Construction of the amniotic fluid-derived exosomal ceRNA network associated with ventricular septal defect[J]. Genomics, 2021, 113(6): 4293-302. |
17 | Gebara N, Scheel J, Skovronova R, et al. Single extracellular vesicle analysis in human amniotic fluid shows evidence of phenotype alterations in preeclampsia[J]. J Extracell Vesicles, 2022, 11(5): e12217. |
18 | Fabietti I, Nardi T, Favero C, et al. Extracellular vesicles and their miRNA content in amniotic and tracheal fluids of fetuses with severe congenital diaphragmatic hernia undergoing fetal intervention[J]. Cells, 2021, 10(6): 1493. |
19 | Nowak JS, Michlewski G. miRNAs in development and pathogenesis of the nervous system[J]. Biochem Soc Trans, 2013, 41(4): 815-20. |
20 | Li SJ, Lv DQ, Yang H, et al. A review on the current literature regarding the value of exosome miRNAs in various diseases[J]. Ann Med, 2023, 55(1): 2232993. |
21 | Chen SY, Li H, Zheng JC, et al. Expression profiles of exosomal microRNAs derived from cerebrospinal fluid in patients with congenital Hydrocephalus determined by microRNA sequencing[J]. Dis Markers, 2022, 2022: 5344508. |
22 | Spaull R, McPherson B, Gialeli A, et al. Exosomes populate the cerebrospinal fluid of preterm infants with post-haemorrhagic hydrocephalus[J]. Int J Dev Neurosci, 2019, 73: 59-65. |
23 | Duy PQ, Furey CG, Kahle KT. Trim71/Lin-41 links an ancient miRNA pathway to human congenital Hydrocephalus [J]. Trends Mol Med, 2019, 25(6): 467-9. |
24 | Wang CM, Zhang L, Cao MQ, et al. Thioredoxin facilitates hepatocellular carcinoma stemness and metastasis by increasing BACH1 stability to activate the AKT/mTOR pathway[J]. FASEB J, 2023, 37(6): e22943. |
25 | Mirzaa GM, Rivière JB, Dobyns WB. Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP[J]. Am J Med Genet C Semin Med Genet, 2013, 163C(2): 122-30. |
26 | Hashimoto Y, Akiyama Y, Otsubo T, et al. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis[J]. Carcinogenesis, 2010, 31(5): 777-84. |
27 | Lin X, Liu BH, Yang XS, et al. Genetic deletion of Rnd3 results in aqueductal stenosis leading to hydrocephalus through up-regulation of Notch signaling[J]. Proc Natl Acad Sci USA, 2013, 110(20): 8236-41. |
28 | Magnelli L, Schiavone N, Staderini F, et al. MAP kinases pathways in gastric cancer[J]. Int J Mol Sci, 2020, 21(8): 2893. |
29 | Mandell JW, VandenBerg SR. ERK/MAP kinase is chronically activated in human reactive astrocytes[J]. Neuroreport, 1999, 10(17): 3567-72. |
30 | Xu H, Zhang SL, Tan GW, et al. Reactive gliosis and neuroinflammation in rats with communicating hydrocephalus[J]. Neuroscience, 2012, 218: 317-25. |
31 | Li N, Zhang QY, Zou JL, et al. MiR-215 promotes malignant progression of gastric cancer by targeting RUNX1[J]. Oncotarget, 2016, 7(4): 4817-28. |
32 | Yan H, Chen YJ, Li LY, et al. Decorin alleviated chronic hydrocephalus via inhibiting TGF-β1/Smad/CTGF pathway after subarachnoid hemorrhage in rats[J]. Brain Res, 2016, 1630: 241-53. |
33 | Xu H, Xu B, Wang ZX, et al. Inhibition of Wnt/β-catenin signal is alleviated reactive gliosis in rats with hydrocephalus[J]. Childs Nerv Syst, 2015, 31(2): 227-34. |
34 | Mo JS, Park WC, Choi SC, et al. MicroRNA 452 regulates cell proliferation, cell migration, and angiogenesis in colorectal cancer by suppressing VEGFA expression[J]. Cancers, 2019, 11(10): 1613. |
35 | Lolansen SD, Rostgaard N, Oernbo EK, et al. Inflammatory markers in cerebrospinal fluid from patients with Hydrocephalus: a systematic literature review[J]. Dis Markers, 2021, 2021: 8834822. |
36 | Ma Z, Li K, Chen P, et al. MiR-134, mediated by IRF1, suppresses tumorigenesis and progression by targeting VEGFA and MYCN in osteosarcoma[J]. Anticancer Agents Med Chem, 2020, 20(10): 1197-208. |
37 | Huang M, Wang Y, Wang ZN, et al. MiR-134-5p inhibits osteoclastogenesis through a novel miR-134-5p/Itgb1/MAPK pathway[J]. J Biol Chem, 2022, 298(7): 102116. |
38 | Yan L, Zhou RH, Feng Y, et al. MiR-134-5p inhibits the malignant phenotypes of osteosarcoma via ITGB1/MMP2/PI3K/Akt pathway[J]. Cell Death Discov, 2024, 10(1): 193. |
39 | Amr KS, Elmawgoud Atia HA, Elazeem Elbnhawy RA, et al. Early diagnostic evaluation of miR-122 and miR-224 as biomarkers for hepatocellular carcinoma[J]. Genes Dis, 2017, 4(4): 215-21. |
40 | 刁 波, 杨 前, 王 刚, 等. 大鼠颅脑损伤后脑组织miR-122-5p含量变化及其对神经功能的影响[J]. 中国临床神经外科杂志, 2018, 23(4): 250-3. |
41 | 康璐璐, 龙小兵, 王 静, 等. MiR-122-5p调节创伤性脑外伤后小胶质细胞极化减弱炎症反应[J]. 中华急诊医学杂志, 2022, 31(8): 1077-84. |
42 | 杨才弟, 王丽娟, 曾鼎华, 等. MiR-122通过靶向RUNX2诱导胶质瘤细胞凋亡的实验研究[J]. 临床肿瘤学杂志, 2019, 24(2): 124-8. |
43 | Yu N, Tian WB, Liu C, et al. MiR-122-5p promotes peripheral and central nervous system inflammation in a mouse model of intracerebral hemorrhage via disruption of the MLLT1/PI3K/AKT signaling[J]. Neurochem Res, 2023, 48(12): 3665-82. |
44 | Nellist M, Schot R, Hoogeveen-Westerveld M, et al. Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia[J]. Mol Genet Metab, 2015, 114(3): 467-73. |
45 | Marguet F, Vezain M, Marcorelles P, et al. Neuropathological hallmarks of fetal hydrocephalus linked to CCDC88C pathogenic variants[J]. Acta Neuropathol Commun, 2021, 9(1): 104. |
[1] | Siqi HE, Nan WEN, Xun CHEN, Yue WANG, Tin ZHANG, Yandong MU. Lycium barbarum glycopeptide reduces bone loss caused by exosomes derived from human gingival fibroblasts with radiation exposure [J]. Journal of Southern Medical University, 2024, 44(9): 1752-1759. |
[2] | Rong DAI, Zeping CAO, Chuanjiao LIU, Yong GE, Meng CHENG, Weili WANG, Yizhen CHEN, Lei ZHANG, Yiping WANG. Qingshen Granules alleviates renal fibrosis in mice by regulating exosomes, miR-330-3p, and CREBBP expression [J]. Journal of Southern Medical University, 2024, 44(8): 1431-1440. |
[3] | Yeming ZHANG, Yuanxiang ZHANG, Xuebin SHEN, Guodong WANG, Lei ZHU. MiRNA-103-3p promotes neural cell autophagy by activating Wnt/β-catenin signaling via targeting rab10 in a rat model of depression [J]. Journal of Southern Medical University, 2024, 44(7): 1315-1326. |
[4] | Guangya CHEN, Xingliang XIANG, Zhaoxiang ZENG, Rongzeng HUANG, Shuna JIN, Mingzhong XIAO, Chengwu SONG. Regulatory effect of Diwu Yanggan Decoction on lysoglycerophospholipids in circulating exosomes in a mouse model of nonalcoholic fatty liver disease [J]. Journal of Southern Medical University, 2024, 44(7): 1382-1388. |
[5] | Tong YUAN, Yuying GUO, Junling ZHANG, Saijun FAN. Normal mouse serum alleviates radiation pneumonitis in mice by inhibiting the focal adhesion signaling pathway [J]. Journal of Southern Medical University, 2024, 44(5): 801-809. |
[6] | SUN Xiaopeng, SHI Hang, ZHANG Lei, LIU Zhong, LI Kewei, QIAN Lingling, ZHU Xingyu, YANG Kangjia, FU Qiang, DING Hua. Exosomes from ectoderm mesenchymal stem cells inhibits lipopolysaccharide-induced microglial M1 polarization and promotes survival of H2O2-exposed PC12 cells by suppressing inflammatory response and oxidative stress [J]. Journal of Southern Medical University, 2024, 44(1): 119-128. |
[7] | HE Yanjuan, LI Zhuoyi, SHEN Lin, SHI Dinghua, LI Shentang. Cardiac progenitor cells-derived exosomes alleviate myocardial injury by regulating Treg cell differentiation through the mTOR pathway in mice with myocardial infarction [J]. Journal of Southern Medical University, 2023, 43(9): 1644-1650. |
[8] | XU Mengqi, SHI Yutong, LIU Junping, WU Minmin, ZHANG Fengmei, HE Zhiqiang, TANG Min. JAG1 affects monocytes-macrophages to reshape the pre-metastatic niche of triple-negative breast cancer through LncRNA MALAT1 in exosomes [J]. Journal of Southern Medical University, 2023, 43(9): 1525-1535. |
[9] | YU Zhengtao, LI Jiameng, JIANG Junwen, LI You, LIN Long, XIA Ying, WANG Lei. miRNA-128-3p inhibits malignant behavior of glioma cells by downregulating KLHDC8A expression [J]. Journal of Southern Medical University, 2023, 43(9): 1447-1459. |
[10] | WANG Li, YAN Zhirui, XIA Yaoxiong. Silencing RAB27a inhibits proliferation, invasion and adhesion of triple-negative breast cancer cells [J]. Journal of Southern Medical University, 2023, 43(4): 560-567. |
[11] | WU Jiaming, DENG Zhongquan, ZHU Yi, DOU Guangjian, LI Jin, HUANG Liyong. Overexpression of miR-431-5p impairs mitochondrial function and induces apoptosis in gastric cancer cells via the Bax/Bcl-2/caspase3 pathway [J]. Journal of Southern Medical University, 2023, 43(4): 537-543. |
[12] | LIU Yu, ZENG Lian, WANG Weihong, YANG Yanling, WANG Zhou, LIU Jianqi, LI Wei, SUN Jingyu, YU Xiaohong. Human bone marrow mesenchymal stem cell exosome-derived miR-335-5p promotes osteogenic differentiation of human periodontal ligament stem cells to alleviate periodontitis by downregulating DKK1 [J]. Journal of Southern Medical University, 2023, 43(3): 420-427. |
[13] | ZHANG Mengying, LI Zhi, PEI Weiya, LI Xueqin, YANG Hui, ZHU Xiaolong, LÜ Kun. M2 macrophage-derived exosomal lncRNA NR_028113.1 promotes macrophage polarization possibly by activating the JAK2/STAT3 signaling pathway [J]. Journal of Southern Medical University, 2023, 43(3): 393-399. |
[14] | ZHANG Panyang, HE Mingmin, ZENG Yuanyuan, CAI Xiongwei. Identification of key molecules in miRNA-mRNA regulatory network associated with high-grade serous ovarian cancer recurrence using bioinformatic analysis [J]. Journal of Southern Medical University, 2023, 43(1): 8-16. |
[15] | WU Wei, CHENG Long, WANG Jie, YANG Chuanlei, SHANG Yuqiang. miRNA-26a reduces vascular smooth muscle cell calcification by regulating connective tissue growth factor [J]. Journal of Southern Medical University, 2022, 42(9): 1303-1308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||