Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (1): 119-128.doi: 10.12122/j.issn.1673-4254.2024.01.14

Previous Articles     Next Articles

Exosomes from ectoderm mesenchymal stem cells inhibits lipopolysaccharide-induced microglial M1 polarization and promotes survival of H2O2-exposed PC12 cells by suppressing inflammatory response and oxidative stress

SUN Xiaopeng, SHI Hang, ZHANG Lei, LIU Zhong, LI Kewei, QIAN Lingling, ZHU Xingyu, YANG Kangjia, FU Qiang, DING Hua   

  1. Department of Orthopedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, China; Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
  • Published:2024-01-24

Abstract: Objective To investigate the potential value of exosomes derived from rat ectoderm mesenchymal stem cells (EMSCs-exo) for repairing secondary spinal cord injury. Methods EMSCs-exo were obtained using ultracentrifugation from EMSCs isolated from rat nasal mucosa, identified by transmission electron microscope, nanoparticle tracking analysis (NTA), and Western blotting, and quantified using the BCA method. Neonatal rat microglia purified by differential attachment were induced with 100 μg/L lipopolysaccharide (LPS) and treated with 37.5 or 75 mg/L EMSCs-exo. PC12 cells were exposed to 400 μmol/L H2O2 and treated with EMSCs-exo at 37.5 or 75 mg/L. The protein and mRNA expressions of Arg1 and iNOS in the treated cells were determined with Western blotting and qRT- PCR, and the concentrations of IL-6, IL-10, and IGF-1 in the supernatants were measured with ELISA. The viability and apoptosis of PC12 cells were detected using CCK-8 assay and flow cytometry. Results The isolated rat EMSCs showed high expressions of nestin, CD44, CD105, and vimentin. The obtained EMSCs-exo had a typical cup-shaped structure under transmission electron microscope with an average particle size of 142 nm and positivity for CD63, CD81, and TSG101 but not vimentin. In LPS-treated microglia, EMSCs-exo treatment at 75 mg/L significantly increased Arg1 protein level and lowered iNOS protein expression (P<0.05). EMSCs-exo treatment at 75 mg/L, as compared with the lower concentration at 37.5 mg/L, more strongly increased Arg1 mRNA expression and IGF-1 and IL-10 production and decreased iNOS mRNA expression and IL-6 production in LPS-induced microglia, and more effectively promoted cell survival and decreased apoptosis rate of H2O2-induced PC12 cells (P<0.05). Conclusion EMSCs-exo at 75 mg/L can effectively reduce the proportion of M1 microglia and alleviate neuronal apoptosis under oxidative stress to promote neuronal survival, suggesting its potential in controlling secondary spinal cord injury.

Key words: ectoderm mesenchymal stem cells; exosomes; microglia; inflammation; oxidative stress; secondary spinal cord injury