Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (9): 1729-1737.doi: 10.12122/j.issn.1673-4254.2024.09.13
Previous Articles Next Articles
Xueli ZHOU1(), Hua LI3, Qingyu CHEN2, Meina JIN1, Haibo LI1, Wei BAI1, Chuxuan JIA1, Cuiying WEI1()
Received:
2024-03-05
Online:
2024-09-20
Published:
2024-09-30
Contact:
Cuiying WEI
E-mail:15540887135@163.com;weicuiying9@163.com
Supported by:
Xueli ZHOU, Hua LI, Qingyu CHEN, Meina JIN, Haibo LI, Wei BAI, Chuxuan JIA, Cuiying WEI. Effects of chronic intermittent hypoxia and reoxygenation on insulin resistance and skeletal muscle miR-27a-3p/PPARγ/IRS1/PI3K/AKT expressions in rats[J]. Journal of Southern Medical University, 2024, 44(9): 1729-1737.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.09.13
Gene | Primer sequence 5'-3' |
---|---|
miR-27a-3p-F | ACACTCCAGCTGGGTTCACAGTGGCTAAG |
miR-27a-3p-R | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCGGAACT |
U6-F | CTCGCTTCGGCAGCACA |
U6-R | AACGCTTCACGAATTTGCGT |
PPARγ-F | TTTCAAGGGTGCCAGTTTCG |
PPARγ-R | GGAGGCCAGCATGGTGTAGAT |
GAPDH-F | CTGGAGAAACCTGCCAAGTATG |
GAPDH-R | GGTGGAAGAATGGGAGTTGCT |
Tab.1 Primer sequences for RT-qPCR
Gene | Primer sequence 5'-3' |
---|---|
miR-27a-3p-F | ACACTCCAGCTGGGTTCACAGTGGCTAAG |
miR-27a-3p-R | CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCGGAACT |
U6-F | CTCGCTTCGGCAGCACA |
U6-R | AACGCTTCACGAATTTGCGT |
PPARγ-F | TTTCAAGGGTGCCAGTTTCG |
PPARγ-R | GGAGGCCAGCATGGTGTAGAT |
GAPDH-F | CTGGAGAAACCTGCCAAGTATG |
GAPDH-R | GGTGGAAGAATGGGAGTTGCT |
Fig.1 Bioinformatics analysis of differentially expressed mRNAs in chronic intermittent hypoxia (CIH). A: CIH exposure regulates miR-27a-3p. B: Heat map showing significant differences in miRNAs between CIH group and control group. C: GO enrichment analysis of the differentially expressed mRNAs. D: KEGG enrichment analysis of the differentially expressed mRNAs. E: Venn diagram of intersecting mRNAs. F: The miR-27a-3p-mRNA pathway regulatory network.
Fig.2 HE staining of the skeletal muscle and analysis of cross-sectional area of the muscle fibers in the two groups (Original magnification: ×400). A: Control group at baseline. B: CIH group at baseline. C: Control group at 8 weeks. D: CIH group at 8 weeks. E: Control group at 12 weeks. F: CIH group at 12 weeks. G: Comparison of the cross-sectional area of the skeletal muscle fibers. aP<0.05 vs control group.
Fig.3 Comparison of miR-27a-3p (A) and PPAR mRNA (B) levels in skeletal muscles in the two groups at different time points detected by RT-qPCR. aP< 0.05 vs control group.
Fig.5 Western blotting for detecting expression levels of PPARγ, GLUT4, p-IRS1/IRS1, PI3K and p-AKT/AKT proteins in the skeletal muscles in the two groups at different time points. A: Western blots of PPARγ, GLUT4, p-IRS1/IRS1, PI3K and p-AKT/AKT in the skeletal muscles. B-F: Relative protein expression levels of PPARγ, GLUT4, p-IRS1/IRS1, PI3K and p-AKT/AKT, respectively. aP<0.05,bP<0.01 vs control group.
1 | Charčiūnaitė K, Gauronskaitė R, Šlekytė G, et al. Evaluation of obstructive sleep apnea phenotypes treatment effectiveness[J]. Medicina, 2021, 57(4): 335. |
2 | Laratta CR, Ayas NT, Povitz M, et al. Diagnosis and treatment of obstructive sleep apnea in adults[J]. CMAJ, 2017, 189(48): E1481- 8. |
3 | Domínguez-Mayoral A, Sánchez-Gómez J, Guerrero P, et al. High prevalence of obstructive sleep apnea syndrome in Spain's Stroke Belt[J]. J Int Med Res, 2021, 49(10): 3000605211053090. |
4 | Wang Y, Yang QC, Feng J, et al. The prevalence and clinical features of hypertension in patients with obstructive sleep apnea hypopnea syndrome and related nursing strategies[J]. J Nurs Res, 2016, 24(1): 41-7. |
5 | Qian YJ, Yi HL, Zou JY, et al. Independent association between sleep fragmentation and dyslipidemia in patients with obstructive sleep apnea[J]. Sci Rep, 2016, 6: 26089. |
6 | Woo HG, Song TJ, Jung JS, et al. Association between the high risk for obstructive sleep apnea and intracranial carotid artery calcification in patients with acute ischemic stroke[J]. Schlaf Atmung, 2021, 25(1): 299-307. |
7 | Gabryelska A, Chrzanowski J, Sochal M, et al. Nocturnal oxygen saturation parameters as independent risk factors for type 2 diabetes mellitus among obstructive sleep apnea patients[J]. J Clin Med, 2021, 10(17): 3770. |
8 | Lu XX, Wang X, Xu T, et al. Circulating C3 and glucose metabolism abnormalities in patients with OSAHS[J]. Schlaf Atmung, 2018, 22(2): 345-51. |
9 | Lv RJ, Liu XY, Zhang Y, et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome[J]. Signal Transduct Target Ther, 2023, 8(1): 218. |
10 | Murphy AM, Thomas A, Crinion SJ, et al. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation[J]. Eur Respir J, 2017, 49(4): 1601731. |
11 | Li XM, Zhang X, Hou XZ, et al. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension[J]. Apoptosis, 2023, 28(3/4): 432-46. |
12 | Schulte R, Wohlleber D, Unrau L, et al. Pioglitazone-mediated peroxisome proliferator-activated receptor γ activation aggravates murine immune-mediated hepatitis[J]. Int J Mol Sci, 2020, 21(7): 2523. |
13 | Regazzi R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications[J]. Expert Opin Ther Targets, 2018, 22(2): 153-60. |
14 | Massart J, Sjögren RJO, Lundell LS, et al. Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in skeletal muscle[J]. Diabetes, 2017, 66(7): 1807-18. |
15 | Zhou T, Meng XH, Che H, et al. Regulation of insulin resistance by multiple MiRNAs via targeting the GLUT4 signalling pathway[J]. Cell Physiol Biochem, 2016, 38(5): 2063-78. |
16 | Liu KX, Chen GP, Lin PL, et al. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model[J]. Life Sci, 2018, 193: 194-9. |
17 | Gao HB, Han ZL, Huang S, et al. Intermittent hypoxia caused cognitive dysfunction relate to miRNAs dysregulation in hippocampus[J]. Behav Brain Res, 2017, 335: 80-7. |
18 | Wu X, Chang SC, Jin JF, et al. NLRP3 inflammasome mediates chronic intermittent hypoxia-induced renal injury implication of the microRNA-155/FOXO3a signaling pathway[J]. J Cell Physiol, 2018, 233(12): 9404-15. |
19 | Li K, Wei P, Qin YW, et al. MicroRNA expression profiling and bioinformatics analysis of dysregulated microRNAs in obstructive sleep apnea patients[J]. Medicine, 2017, 96(34): e7917. |
20 | 王 云, 何 燕, 刘师节, 等. 阻塞性睡眠呼吸暂停低通气综合征与糖脂代谢紊乱的机制研究进展[J]. 中国全科医学, 2022, 25(2): 243-7. |
21 | Wang C, Tan J, Miao YY, et al. Obstructive sleep apnea, prediabetes and progression of type 2 diabetes: a systematic review and meta-analysis[J]. J Diabetes Investig, 2022, 13(8): 1396-411. |
22 | Zeng S, Wang YY, Ai L, et al. Chronic intermittent hypoxia-induced oxidative stress activates TRB3 and phosphorylated JNK to mediate insulin resistance and cell apoptosis in the pancreas[J]. Clin Exp Pharmacol Physiol, 2024, 51(3): e13843. |
23 | 郑莉芳, 陈佩杰, 肖卫华. MicroRNAs对骨骼肌胰岛素抵抗的调控及其机制[J]. 生理学报, 2019, 71(3): 497-504. |
24 | Wei J, Hao QY, Chen CK, et al. Epigenetic repression of miR-17 contributed to di(2-ethylhexyl) phthalate-triggered insulin resistance by targeting Keap1-Nrf2/miR-200a axis in skeletal muscle[J]. Theranostics, 2020, 10(20): 9230-48. |
25 | Kong QR, Ji DM, Li FR, et al. MicroRNA-221 promotes myocardial apoptosis caused by myocardial ischemia-reperfusion by down-regulating PTEN[J]. Eur Rev Med Pharmacol Sci, 2019, 23(9): 3967-75. |
26 | Liang JT, Tang JM, Shi HJ, et al. MiR-27a-3p targeting RXRα promotes colorectal cancer progression by activating Wnt/β-catenin pathway[J]. Oncotarget, 2017, 8(47): 82991-3008. |
27 | Han LL, Wang SH, Yao MY, et al. Urinary exosomal microRNA-145-5p and microRNA-27a-3p act as noninvasive diagnostic biomarkers for diabetic kidney disease[J]. World J Diabetes, 2024, 15(1): 92-104. |
28 | Ghoreishi E, Shahrokhi SZ, Kazerouni F, et al. Circulating miR-148b-3p and miR-27a-3p can be potential biomarkers for diagnosis of pre-diabetes and type 2 diabetes: integrating experimental and in-silico approaches[J]. BMC Endocr Disord, 2022, 22(1): 207. |
29 | Chemello F, Grespi F, Zulian A, et al. Transcriptomic analysis of single isolated myofibers identifies miR-27a-3p and miR-142-3p as regulators of metabolism in skeletal muscle[J]. Cell Rep, 2019, 26(13): 3784-97. e8. |
30 | LaPierre MP, Stoffel M. MicroRNAs as stress regulators in pancreatic beta cells and diabetes[J]. Mol Metab, 2017, 6(9): 1010-23. |
31 | Shahrokhi SZ, Saeidi L, Sadatamini M, et al. Can miR-145-5p be used as a marker in diabetic patients[J]? Arch Physiol Biochem, 2022, 128(5): 1175-80. |
32 | Saeidi L, Shahrokhi SZ, Sadatamini M, et al. Can circulating miR-7-1-5p, and miR-33a-5p be used as markers of T2D patients[J]? Arch Physiol Biochem, 2023, 129(3): 771-7. |
33 | 汤金梅, 吕 荣, 毕亭亭, 等. PCB118诱发大鼠胰岛素抵抗及对骨骼肌细胞功能的影响[J]. 中国老年学杂志, 2021, 41(13): 2808-11. |
34 | 谭 健, 莫海兰, 李 洁, 等.慢性间歇性缺氧对大鼠骨骼肌葡萄糖转运蛋白4表达的影响 [J]. 南方医科大学学报,2014, 34 (07):1061-4. |
35 | 张 婷. 不同骨骼肌来源的外泌体携带miR-27a-3p调节肌间FAPs成脂分化的研究[D]. 重庆: 重庆医科大学, 2022. |
36 | 郑志然. bta-miR-27a-3p靶向INSR在围产期奶牛脂肪肝发病中的作用研究[D]. 泰安: 山东农业大学, 2022. |
37 | 王一成, 刘承雨, 黄汉鹏. 线粒体动力学在OSAHS合并肥胖所致腓肠肌损伤中的作用及其机制研究[J]. 医学研究杂志, 2023, 52(12): 120-7. |
38 | 栗瑞雪. 间歇低氧大鼠骨骼肌细胞PTP1B及PI3K表达在胰岛素抵抗中的作用[D]. 太原: 山西医科大学, 2016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||