| [1] |
McGuire J, Thomson A, Kennedy PG. The biomechanics of diabetic foot amputation[J]. Wounds, 2021: WNDS20210414-2. doi:10.25270/wnds/041421.01
|
| [2] |
Jiang PN, Li QH, Luo YH, et al. Current status and progress in research on dressing management for diabetic foot ulcer[J]. Front Endocrinol (Lausanne), 2023, 14: 1221705. doi:10.3389/fendo.2023.1221705
|
| [3] |
Ferreira G, Faria S, Carvalho A, et al. Relaxation intervention to improve diabetic foot ulcer healing: Results from a pilot randomized controlled study[J]. Wound Repair Regen, 2023, 31(4): 528-41. doi:10.1111/wrr.13085
|
| [4] |
Pereira MG, Vilaça M, Pedras S, et al. Wound healing and healing process in patients with diabetic foot ulcers: a survival analysis study[J]. Diabetes Res Clin Pract, 2023, 198: 110623. doi:10.1016/j.diabres.2023.110623
|
| [5] |
Rehman ZU, Khan J, Noordin S. Diabetic foot ulcers: contemporary assessment and management[J]. J Pak Med Assoc, 2023, 73(7): 1480-7. doi:10.47391/jpma.6634
|
| [6] |
Deng HB, Li BH, Shen Q, et al. Mechanisms of diabetic foot ulceration: a review[J]. J Diabetes, 2023, 15(4): 299-312. doi:10.1111/1753-0407.13372
|
| [7] |
Ju YK, Hu Y, Yang P, et al. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration[J]. Mater Today Bio, 2022, 18: 100522. doi:10.1016/j.mtbio.2022.100522
|
| [8] |
Zou JX, Yang WN, Cui WS, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing[J]. J Nanobio-technology, 2023, 21(1): 14. doi:10.1186/s12951-023-01778-6
|
| [9] |
Wang T, Gao HQ, Wang DZ, et al. Stem cell-derived exosomes in the treatment of Melasma and its percutaneous penetration[J]. Lasers Surg Med, 2023, 55(2): 178-89. doi:10.1002/lsm.23628
|
| [10] |
Liu YY, Zhang MW, Liao Y, et al. Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing[J]. Front Immunol, 2023, 14: 1142088. doi:10.3389/fimmu.2023.1142088
|
| [11] |
Zhang KY, Zhao XN, Chen XN, et al. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment[J]. ACS Appl Mater Interfaces, 2018, 10(36): 30081-91. doi:10.1021/acsami.8b08449
|
| [12] |
Li ZT, Xing XL, Zhao CR, et al. A rapid interactive chitosan-based medium with antioxidant and pro-vascularization properties for infected burn wound healing[J]. Carbohydr Polym, 2024, 333: 121991. doi:10.1016/j.carbpol.2024.121991
|
| [13] |
陈金妙, 朱灵颖, 廖米荣, 等. 糖尿病慢性伤口感染患者的临床特点及伤口愈合的危险因素分析[J]. 中国现代医生, 2022, 60(27): 50-4.
|
| [14] |
Bi HS, Li H, Zhang C, et al. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process[J]. Stem Cell Res Ther, 2019, 10(1): 302. doi:10.1186/s13287-019-1415-6
|
| [15] |
Kim J, Lee CB, Shin Y, et al. sEVs from tonsil-derived mesenchymal stromal cells alleviate activation of hepatic stellate cells and liver fibrosis through miR-486-5p[J]. Mol Ther, 2021, 29(4): 1471-86. doi:10.1016/j.ymthe.2020.12.025
|
| [16] |
Keramaris NC, Kaptanis S, Moss HL, et al. Endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) in bone healing[J]. Curr Stem Cell Res Ther, 2012, 7(4): 293-301. doi:10.2174/157488812800793081
|
| [17] |
Wang LM, Chen J, Song J, et al. Activation of the Wnt/β‑catenin signalling pathway enhances exosome production by hucMSCs and improves their capability to promote diabetic wound healing[J]. J Nanobiotechnology, 2024, 22(1): 373. doi:10.1186/s12951-024-02650-x
|
| [18] |
Teng LP, Maqsood M, Zhu M, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate diabetic wound healing via promoting M2 macrophage polarization, angiogenesis, and collagen deposition[J]. Int J Mol Sci, 2022, 23(18): 10421. doi:10.3390/ijms231810421
|
| [19] |
Yan CC, Xv Y, Lin Z, et al. Human umbilical cord mesenchymal stem cell-derived exosomes accelerate diabetic wound healing via ameliorating oxidative stress and promoting angiogenesis[J]. Front Bioeng Biotechnol, 2022, 10: 829868. doi:10.3389/fbioe.2022.829868
|
| [20] |
蒋 杨, 陈 博, 王贤君, 等. 人脐带间充质干细胞治疗肺部疾病的研究与应用进展[J]. 临床肺科杂志, 2022, 27(1): 124-9.
|
| [21] |
He SH, Hou TY, Zhou JL, et al. Endothelial cells promote migration of mesenchymal stem cells via PDGF-BB/PDGFR β-src-Akt in the context of inflammatory microenvironment upon bone defect[J]. Stem Cells Int, 2022, 2022: 2401693. doi:10.1155/2022/2401693
|
| [22] |
Song YL, You YC, Xu XY, et al. Adipose-derived mesenchymal stem cell-derived exosomes biopotentiated extracellular matrix hydrogels accelerate diabetic wound healing and skin regeneration[J]. Adv Sci (Weinh), 2023, 10(30): e2304023. doi:10.1002/advs.202304023
|
| [23] |
张丁丁, 郭 荣, 赵松峰, 等. 载锰单原子纳米酶和驱蛔素的壳聚糖水凝胶制备及其抗幽门螺杆菌活性[J]. 中草药, 2024, 55(6): 1925-34.
|
| [24] |
由子樱, 伍彦霖, 孙一民, 等. 搭载米诺环素-壳聚糖纳米粒复合水凝胶用于牙周炎治疗的初步研究[J]. 华西口腔医学杂志, 2023, 41(1): 11-20.
|
| [25] |
Kwon SK, Song JJ, Cho CG, et al. Polycaprolactone spheres and theromosensitive Pluronic F127 hydrogel for vocal fold augmen-tation: in vivo animal study for the treatment of unilateral vocal fold palsy[J]. Laryngoscope, 2013, 123(7): 1694-703. doi:10.1002/lary.23879
|
| [26] |
Wang CG, Wang M, Xu TZ, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2019, 9(1): 65-76. doi:10.7150/thno.29766
|
| [27] |
Yang MY, Li JP, Gu P, et al. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment[J]. Bioact Mater, 2021, 6(7): 1973-87. doi:10.1016/j.bioactmat.2020.12.010
|
| [28] |
Amiri Z, Molavi AM, Amani A, et al. Fabrication, characterization and wound-healing properties of core-shell SF@chitosan/ZnO/Astragalus arbusculinus gum nanofibers[J]. Nanomedicine (Lond), 2024, 19(6): 499-518. doi:10.2217/nnm-2023-0311
|
| [29] |
le Noble F, Kupatt C. Interdependence of angiogenesis and arteriogenesis in development and disease[J]. Int J Mol Sci, 2022, 23(7): 3879. doi:10.3390/ijms23073879
|
| [30] |
Idrovo JP, Yang WL, Jacob A, et al. Combination of adrenomedullin with its binding protein accelerates cutaneous wound healing[J]. PLoS One, 2015, 10(3): e0120225. doi:10.1371/journal.pone.0120225
|
| [31] |
Oviedo-Socarrás T, Vasconcelos AC, Barbosa IX, et al. Diabetes alters inflammation, angiogenesis, and fibrogenesis in intra-peritoneal implants in rats[J]. Microvasc Res, 2014, 93: 23-9. doi:10.1016/j.mvr.2014.02.011
|
| [32] |
Chuar PF, Ng YT, Phang SCW, et al. Tocotrienol-rich vitamin E (tocovid) improved nerve conduction velocity in type 2 diabetes mellitus patients in a phase II double-blind, randomized controlled clinical trial[J]. Nutrients, 2021, 13(11): 3770. doi:10.3390/nu13113770
|