| [1] |
De Palma ST, Hermans EC, Shamorkina TM, et al. Hypoxic preconditioning enhances the potential of mesenchymal stem cells to treat neonatal hypoxic-ischemic brain injury[J]. Stroke, 2025, 56(7): 1872-82. doi:10.1161/strokeaha.124.048964
|
| [2] |
Yang MM, Wang KX, Liu BY, et al. Correction to: hypoxic-ischemic encephalopathy: pathogenesis and promising therapies[J]. Mol Neurobiol, 2025, 62(2): 2123. doi:10.1007/s12035-024-04398-9
|
| [3] |
石金沙, 张皓南, 张幸霖, 等. 天麻素通过调节CCR5/AKT信号传导缓解新生小鼠缺血缺氧后小胶质细胞介导的炎症反应[J]. 南方医科大学学报, 2024, 44(10): 1850-7.
|
| [4] |
Deng QT, Parker E, Duan R, et al. Preconditioning and posttrea-tment strategies in neonatal hypoxic-ischemic encephalopathy: recent advances and clinical challenges[J]. Mol Neurobiol, 2025, 62(8): 10020-44. doi:10.1007/s12035-025-04896-4
|
| [5] |
Zheng JY, Fang Y, Zhang M, et al. Mechanisms of ferroptosis in hypoxic-ischemic brain damage in neonatal rats[J]. Exp Neurol, 2024, 372: 114641. doi:10.1016/j.expneurol.2023.114641
|
| [6] |
郭 涛, 左涵珺, 匡显锋, 等. 小胶质细胞介导的铁死亡在缺氧缺血性脑损伤中的研究进展[J]. 细胞与分子免疫学杂志, 2025, 41(6): 552-8.
|
| [7] |
Zhang XL, Luo JJ, Bharati L, et al. Protocatechuic acid suppresses ferroptosis to protect against hypoxic-ischemic encephalopathy by targeting the HIF-1α/VEGFA axis[J]. Phytomedicine, 2025, 143: 156900. doi:10.1016/j.phymed.2025.156900
|
| [8] |
Feng L, Yin XH, Hua QQ, et al. Advancements in understanding the role of ferroptosis in hypoxia-associated brain injury: a narrative review[J]. Transl Pediatr, 2024, 13(6): 963-75. doi:10.21037/tp-24-47
|
| [9] |
张新月, 刘晨萌, 马瑜徽, 等. TXNIP/Trx-1/GPX4通路促进新生大鼠缺氧缺血后海马神经元铁死亡的作用机制[J]. 中国当代儿科杂志, 2022, 24(9): 1053-60.
|
| [10] |
Tan XY, Zhang T, Ding XJ, et al. Iron overload facilitates neonatal hypoxic-ischemic brain damage via SLC7A11-mediated ferroptosis[J]. J Neurosci Res, 2023, 101(7): 1107-24.
|
| [11] |
Lin Q, Hu DW, Hao XH, et al. Effect of hypoxia-ischemia on the expression of iron-related proteins in neonatal rat brains[J]. Neural Plast, 2023, 2023: 4226139. doi:10.1155/2023/4226139
|
| [12] |
Chen HC, Wusiman Y, Zhao J, et al. Metabolomics analysis revealed the neuroprotective role of 2-phosphoglyceric acid in hypoxic-ischemic brain damage through GPX4/ACSL4 axis regulation[J]. Eur J Pharmacol, 2024, 971: 176539. doi:10.1016/j.ejphar.2024.176539
|
| [13] |
Zhang M, Liu ZM, Zhou W, et al. Ferrostatin-1 attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis[J]. Transl Pediatr, 2023, 12(11): 1944-70. doi:10.21037/tp-23-189
|
| [14] |
Qin WX, Du JQ, Wang F, et al. Gastrodin: a potential natural product for the prevention and treatment of cerebral ischemia-reperfusion injury[J]. Front Pharmacol, 2025, 16: 1554170. doi:10.3389/fphar.2025.1554170
|
| [15] |
Shi HL, Shi JS, Wang Z, et al. GAS reduced inflammatory responses in activated microglia by regulating the Ccr2/Akt/Gsk-3β pathway[J]. Mol Brain, 2025, 18(1): 40. doi:10.1186/s13041-025-01206-w
|
| [16] |
Wang PX, Zuo HJ, Shi HL, et al. Gastrodin inhibits reactive astrocyte-mediated inflammation in hypoxic-ischemic brain damage through S100B/RAGE-Smad3 signaling[J]. Acta Biochim Biophys Sin (Shanghai), 2025, 57(6): 955-67. doi:10.3724/abbs.2024235
|
| [17] |
刘 敏, 丁艳霞, 张业贵, 等. 天麻素对脑缺血大鼠纹状体BDNF、IL-6表达的影响[J]. 中国临床药理学与治疗学, 2024, 29(4): 440-6.
|
| [18] |
左涵珺, 段兆达, 王 朝, 等. 天麻素经PI3K/AKT通路改善新生大鼠缺氧缺血性脑损伤后小胶质细胞介导的炎症反应[J]. 南方医科大学学报, 2024, 44(9): 1712-9.
|
| [19] |
Xiao P, Huang HY, Zhao HS, et al. Edaravone dexborneol protects against cerebral ischemia/reperfusion-induced blood-brain barrier damage by inhibiting ferroptosis via activation of nrf-2/HO-1/GPX4 signaling[J]. Free Radic Biol Med, 2024, 217: 116-25. doi:10.1016/j.freeradbiomed.2024.03.019
|
| [20] |
邱政皓, 马雅萍, 马昌盛, 等. 枸杞多糖通过SLC7A11/GPX4通路抑制铁死亡减轻小鼠脑缺血再灌注损伤[J]. 神经解剖学杂志, 2024, 40(5): 607-12.
|
| [21] |
Zhou YY, Wang YB, Wu XQ, et al. Carthamin yellow attenuates brain injury in a neonatal rat model of ischemic-hypoxic encephalopathy by inhibiting neuronal ferroptosis in the hippocampus[J]. Transl Neurosci, 2023, 14(1): 20220331. doi:10.1515/tnsci-2022-0331
|
| [22] |
Liu QL, Song TJ, Chen B, et al. Ferroptosis of brain microvascular endothelial cells contributes to hypoxia-induced blood-brain barrier injury[J]. FASEB J, 2023, 37(5): e22874. doi:10.1096/fj.202201765r
|
| [23] |
Tian HY, Huang BY, Nie HF, et al. The interplay between mitochondrial dysfunction and ferroptosis during ischemia-associated central nervous system diseases[J]. Brain Sci, 2023, 13(10): 1367. doi:10.3390/brainsci13101367
|
| [24] |
Abdukarimov N, Kokabi K, Kunz J. Ferroptosis and iron homeostasis: molecular mechanisms and neurodegenerative disease implications[J]. Antioxidants (Basel), 2025, 14(5): 527. doi:10.3390/antiox14050527
|
| [25] |
蒋 欢, 白文娅, 邵建林. 铁死亡在脑缺血再灌注损伤机制中的研究进展[J]. 中国比较医学杂志, 2024, 34(7): 101-9.
|
| [26] |
Al-Ward H, Chen W, Gao WX, et al. Can miRNAs in MSCs-EVs offer a potential treatment for hypoxic-ischemic encephalopathy?[J]. Stem Cell Rev Rep, 2025, 21(1): 236-53. doi:10.1007/s12015-024-10803-6
|
| [27] |
Wang YL, Bai MT, Wang X, et al. Gastrodin: a comprehensive pharmacological review[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(6): 3781-802. doi:10.1007/s00210-023-02920-9
|
| [28] |
张林落, 李长青, 皇玲玲, 等. 梓醇扶正制毒配伍从SLC7A11/GPX4通路抑制铁死亡减轻雷公藤甲素肝毒性[J]. 南方医科大学学报, 2025, 45(4): 810-8.
|
| [29] |
Zhang JX, Liu ZJ, Zhao WJ, et al. Targeting KRAS sensitizes ferroptosis by coordinately regulating the TCA cycle and Nrf2-SLC7A11-GPX4 signaling in hepatocellular carcinoma[J]. Smart Med, 2025, 4(2): e70005. doi:10.1002/smmd.70005
|
| [30] |
Khanduja S, Kim J, Kang JK, et al. Hypoxic-ischemic brain injury in ECMO: pathophysiology, neuromonitoring, and therapeutic opportunities[J]. Cells, 2023, 12(11): 1546. doi:10.3390/cells12111546
|
| [31] |
Zheng X, Gong TW, Yu WQ, et al. Study on cellular mechanism of improving inflammatory effect of gastrodin[J]. Tohoku J Exp Med, 2025, 265(4): 249-59. doi:10.1620/tjem.2024.j141
|
| [32] |
Salama RM, Darwish SF, Yehia R, et al. Lactoferrin alleviates gentamicin-induced acute kidney injury in rats by suppressing ferroptosis: Highlight on ACSL4, SLC7A11, NCOA4, FSP1 pathways and miR-378a-3p, LINC00618 expression[J]. Food Chem Toxicol, 2024, 193: 115027. doi:10.1016/j.fct.2024.115027
|