[1] |
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology, 2023, 77(5): 1797-835. doi:10.1097/hep.0000000000000323
|
[2] |
范建高, 徐小元, 南月敏, 等. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 实用肝脏病杂志, 2024, 27(4): 494-510.
|
[3] |
Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2022, 7(9): 851-61. doi:10.1016/s2468-1253(22)00165-0
|
[4] |
吴挺丰, 廖献花, 钟碧慧. 中国部分地区非酒精性脂肪肝病的流行情况[J]. 临床肝胆病杂志, 2020, 36(6): 1370-3.
|
[5] |
Dick MS, Sborgi L, Rühl S, et al. ASC filament formation serves as a signal amplification mechanism for inflammasomes[J]. Nat Commun, 2016, 7: 11929. doi:10.1038/ncomms11929
|
[6] |
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7): 407-20. doi:10.1038/nri.2016.58
|
[7] |
Wei Q, Zhu R, Zhu J, et al. E2-induced activation of the NLRP3 inflammasome triggers pyroptosis and inhibits autophagy in HCC cells[J]. Oncol Res, 2019, 27(7): 827-34. doi:10.3727/096504018x15462920753012
|
[8] |
Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. doi:10.1038/s41392-021-00507-5
|
[9] |
张文杰, 孙迪阳, 王 培. 炎症小体介导的细胞焦亡在非酒精性脂肪肝病中的作用及机制[J]. 药学实践杂志, 2020, 38(1): 9-13, 41. doi:10.3969/j.issn.1006-0111.201902051
|
[10] |
Gaul S, Leszczynska A, Alegre F, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis[J]. J Hepatol, 2021, 74(1): 156-67. doi:10.1016/j.jhep.2020.07.041
|
[11] |
Knorr J, Wree A, Tacke F, et al. The NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis[J]. Semin Liver Dis, 2020, 40(3): 298-306. doi:10.1055/s-0040-1708540
|
[12] |
Wree A, McGeough MD, Peña CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD[J]. J Mol Med, 2014, 92(10): 1069-82. doi:10.1007/s00109-014-1170-1
|
[13] |
Yong QH, Huang CY, Chen BN, et al. Gentiopicroside improves NASH and liver fibrosis by suppressing TLR4 and NLRP3 signaling pathways[J]. Biomed Pharmacother, 2024, 177: 116952. doi:10.1016/j.biopha.2024.116952
|
[14] |
Lin YP, Fang QL, Fu SN, et al. The alleviating effect of Scutellaria amoena extract on the regulation of gut microbiota and its metabolites in NASH rats by inhibiting the NLRP3/ASC/caspase-1 axis[J]. Front Pharmacol, 2023, 14: 1143785. doi:10.3389/fphar.2023.1143785
|
[15] |
蔡 浩. 慢性低氧对小鼠非酒精性脂肪肝炎的调控机制研究[D]. 西宁: 青海大学, 2021.
|
[16] |
颜然然, 沈利娟, 林凯歌, 等. 非酒精性脂肪性肝病进程中低氧的作用及其机制研究进展[J]. 生理科学进展, 2024, 55(2): 171-8.
|
[17] |
Elisabetta M, Salvatore S, Beatrice F, et al. Hypoxia-inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein[J]. Hepatology (Baltimore, Md.), 2018, 67(6): 2196-214. doi:10.1002/hep.29754
|
[18] |
Cui Y, Guo C, Xia Z, et al. Exploring the therapeutic potential of a nano micelle containing a carbon monoxide-releasing molecule for metabolic-associated fatty liver disease by modulating hypoxia-inducible factor-1α[J]. Acta Biomater, 2023,169:500-16. doi:10.1016/j.actbio.2023.08.009
|
[19] |
Xu P, Liu M, Liu M, et al. Management of non-alcoholic fatty liver disease-associated hepatocellular carcinoma[J]. Biosci Trends, 2024, 18(5): 431-43. doi:10.5582/bst.2024.01295
|
[20] |
Lu F, Liu J, She B, et al. Global trends and inequalities of liver complications related to metabolic dysfunction-associated steatotic liver disease: an analysis from 1990 to 2021[J]. Liver Int, 2025, 45(4): e16120. doi:10.1111/liv.16120
|
[21] |
Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. doi:10.1038/nrgastro.2017.109
|
[22] |
周青丽, 许真源, 张素妍, 等. NOD样受体蛋白3炎症小体在非酒精性脂肪性肝炎中的作用[J]. 临床肝胆病杂志, 2019, 35(6): 1380-3.
|
[23] |
张议文, 张凯悦, 李盼盼, 等. NLRP3炎症小体在慢性肝病及肝损伤中的研究进展[J]. 生命科学, 2023, 35(5): 618-28.
|
[24] |
陈聪杰. NLRP3炎症小体介导的非酒精性脂肪性肝炎小鼠肝损伤和脂质代谢的实验研究[D]. 福州: 福建医科大学, 2021.
|
[25] |
Feng Y, Li W, Wang Z, et al. The p-STAT3/ANXA2 axis promotes caspase-1-mediated hepatocyte pyroptosis in non-alcoholic steatohepatitis[J]. J Transl Med, 2022, 20(1): 497. doi:10.1186/s12967-022-03692-1
|
[26] |
Wang L, Hauenstein AV. The NLRP3 inflammasome: Mechanism of action, role in disease and therapies[J]. Mol Aspects Med, 2020, 76: 100889. doi:10.1016/j.mam.2020.100889
|
[27] |
Calcagno DM, Chu A, Gaul S, et al. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH[J]. Hepatology, 2022, 76(3): 727-41. doi:10.1002/hep.32320
|
[28] |
Mesarwi OA, Loomba R, Malhotra A. Obstructive sleep apnea, hypoxia, and nonalcoholic fatty liver disease[J]. Am J Respir Crit Care Med, 2019, 199(7): 830-41. doi:10.1164/rccm.201806-1109tr
|
[29] |
张子昂, 董 倩, 官瑞丽, 等. 盐酸小檗碱通过抑制TNF-α/caspase-8/caspase-3信号通路减轻急性低氧暴露引起的肝损伤[J]. 细胞与分子免疫学杂志, 2022, 38(1): 48-53.
|
[30] |
Chen J, Chen J, Fu H, et al. Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway[J]. Am J Physiol Endocrinol Metab, 2019, 317(4): E710-22. doi:10.1152/ajpendo.00052.2019
|
[31] |
Holzner LMW, Murray AJ. Hypoxia-inducible factors as key players in the pathogenesis of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis[J]. Front Med: Lausanne, 2021, 8: 753268. doi:10.3389/fmed.2021.753268
|
[32] |
Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature, 2012,482(7384):179-85. doi:10.1038/nature10809
|
[33] |
李红山, 奚瑛斐, 何哲耘. 中药组分HJJB方对小鼠非酒精性脂肪性肝炎的防治作用及其对肠道菌群的影响[J]. 中华中医药杂志, 2022,37(10):6014-8.
|
[34] |
Koenen TB, Stienstra R, van Tits LJ, et al. Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue[J]. Diabetes, 2011,60(2):517-24. doi:10.2337/db10-0266
|
[35] |
张成慧, 邬云红, 王溯源, 等. 糖代谢对高原环境的适应与疾病[J]. 四川大学学报(医学版), 2024, 55(6): 1460-8. doi:10.12182/20241160604
|
[36] |
Fu C, Jiang L, Zhu F, et al. Chronic intermittent hypoxia leads to insulin resistance and impaired glucose tolerance through dysregulation of adipokines in non-obese rats[J]. Sleep Breath, 2015, 19(4): 1467-73. doi:10.1007/s11325-015-1144-8
|
[37] |
林华龙. NLRP3炎症小体的活化机制探究及抑制剂发现. 合肥: 中国科学技术大学, 2023.
|