[1] |
Zhang CL, Merana GR, Harris-Tryon T, et al. Skin immunity: dissecting the complex biology of our body's outer barrier[J]. Mucosal Immunol, 2022, 15(4): 551-61. doi:10.1038/s41385-022-00505-y
|
[2] |
Bernatchez SF, Bichel J. The science of skin: measuring damage and assessing risk[J]. Adv Wound Care: New Rochelle, 2023, 12(4): 187-204. doi:10.1089/wound.2022.0021
|
[3] |
Zhu Y, Yu X, Cheng G. Human skin bacterial microbiota homeostasis: a delicate balance between health and disease[J]. mLife, 2023, 2(2): 107-20. doi:10.1002/mlf2.12064
|
[4] |
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing[J]. Nat Rev Mol Cell Biol, 2024, 25(8): 599-616. doi:10.1038/s41580-024-00715-1
|
[5] |
He DF, Liao CY, Li PF, et al. Multifunctional photothermally responsive hydrogel as an effective whole-process management platform to accelerate chronic diabetic wound healing[J]. Acta Biomater, 2024, 174: 153-62. doi:10.1016/j.actbio.2023.11.043
|
[6] |
Sen CK. Human wounds and its burden: an updated compendium of estimates[J]. Adv Wound Care: New Rochelle, 2019, 8(2): 39-48. doi:10.1089/wound.2019.0946
|
[7] |
Zhao X, Wu H, Guo BL, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing[J]. Biomaterials, 2017, 122: 34-47. doi:10.1016/j.biomaterials.2017.01.011
|
[8] |
Wang Y, Yang Y, Shi Y, et al. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives[J]. Adv Mater, 2020, 32(18): e1904106. doi:10.1002/adma.202070138
|
[9] |
贝 颖, 李文靖, 李美运, 等. 普鲁士蓝纳米颗粒促进糖尿病皮肤创面愈合[J]. 中国组织工程研究, 2024, 28(10): 1526-32. doi:10.12307/2024.249
|
[10] |
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists[J]. J Nanobiotechnology, 2022, 20(1): 262. doi:10.1186/s12951-022-01477-8
|
[11] |
Zhou J, Chen N, Liao J, et al. Ag-activated metal-organic framework with peroxidase-like activity synergistic Ag+ release for safe bacterial eradication and wound healing[J]. Nanomaterials, 2022, 12(22): 4058. doi:10.3390/nano12224058
|
[12] |
Mamidi N, Delgadillo RMV, Sustaita AO, et al. Current nanocomposite advances for biomedical and environmental application diversity [J]. Med Res Rev. 2025, 45(2): 576-628. doi:10.1002/med.22082
|
[13] |
Lin ZX, Jiang BP, Liang JZ, et al. Phycocyanin functionalized single-walled carbon nanohorns hybrid for near-infrared light-mediated cancer phototheranostics[J]. Carbon, 2019, 143: 814-27. doi:10.1016/j.carbon.2018.12.011
|
[14] |
Bannu SM, Lomada D, Gulla S, et al. Potential therapeutic applications of C-phycocyanin[J]. Curr Drug Metab, 2019, 20(12): 967-76. doi:10.2174/1389200220666191127110857
|
[15] |
Blas-Valdivia V, Moran-Dorantes DN, Rojas-Franco P, et al. C-Phycocyanin prevents acute myocardial infarction-induced oxidative stress, inflammation and cardiac damage[J]. Pharm Biol, 2022, 60(1): 755-63. doi:10.1080/13880209.2022.2055089
|
[16] |
王晓真, 付 聪, 董鸿春, 等. 藻蓝蛋白稳定性及稳态化的研究进展[J]. 食品安全质量检测学报, 2022, 13(1): 103-9.
|
[17] |
Li FP, Huang K, Chang HS, et al. A polydopamine coated nanoscale FeS theranostic platform for the elimination of drug-resistant bacteria via photothermal-enhanced Fenton reaction[J]. Acta Biomater, 2022, 150: 380-90. doi:10.1016/j.actbio.2022.07.046
|
[18] |
Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chem Rev, 2014, 114(9): 5057-115. doi:10.1021/cr400407a
|
[19] |
Xu N, Huang QQ, Shi L, et al. A bioinspired polydopamine-FeS nanocomposite with high antimicrobial efficiency via NIR-mediated Fenton reaction[J]. Dalton Trans, 2023, 52(6): 1687-701. doi:10.1039/d2dt03765c
|
[20] |
Liang Z, Liu W, Wang Z, et al. Near-infrared laser-controlled nitric oxide-releasing gold nanostar/hollow polydopamine Janus nano-particles for synergistic elimination of methicillin-resistant Staphylo-coccus aureus and wound healing[J]? Acta Biomater, 2022, 143: 428-44. doi:10.1016/j.actbio.2022.02.029
|
[21] |
Yuwen LH, Xiao HY, Lu P, et al. Amylase degradation enhanced NIR photothermal therapy and fluorescence imaging of bacterial biofilm infections[J]. Biomater Sci, 2023, 11(2): 630-40. doi:10.1039/d2bm01570f
|
[22] |
Chen Y, Gao Y, Chen Y, et al. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment[J]. J Control Release, 2020, 328: 251-62. doi:10.1016/j.jconrel.2020.08.055
|
[23] |
宋居星私, 张黎明, 王倩倩. 纳米材料应用于伤口敷料的研究进展[J]. 海军医学杂志, 2025, 46(3): 319-23.
|
[24] |
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds[J]. Adv Wound Care: New Rochelle, 2015, 4(9): 560-82. doi:10.1089/wound.2015.0635
|
[25] |
Nussbaum SR, Carter MJ, Fife CE, et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds[J]. Value Health, 2018, 21(1): 27-32. doi:10.1016/j.jval.2017.07.007
|
[26] |
Sakata J, Sasaki S, Handa K, et al. A retrospective, longitudinal study to evaluate healing lower extremity wounds in patients with diabetes mellitus and ischemia using standard protocols of care and platelet-rich plasma gel in a Japanese wound care program[J]. Ostomy Wound Manage, 2012, 58(4): 36-49.
|
[27] |
邵丽林, 解佑银, 张雷芳. 藻蓝蛋白对小鼠皮肤损伤的治疗效果[J]. 湖北农业科学, 2024, 63(6): 141-50.
|
[28] |
Dong J, Lang YT, He J, et al. Phycocyanin-based multifunctional microspheres for treatment of infected radiation-induced skin injury[J]. Biomaterials, 2025, 317: 123061. doi:10.1016/j.biomaterials.2024.123061
|
[29] |
Liang HZ, Sun YL, Li CM, et al. Facile synthesis of phycocyanin/polydopamine hierarchical nanocomposites for synergizing PTT/PDT against cancer[J]. RSC Adv, 2022, 12(54): 34815-21. doi:10.1039/d2ra05863d
|
[30] |
刘宇炜, 郭 卓. 聚多巴胺-阿霉素纳米颗粒对癌细胞的化疗-光热治疗协同作用[J]. 高等学校化学学报, 2015, 36(7): 1389-94. doi:10.7503/cjcu20141108
|
[31] |
Peng N, Du Y, Liu J, et al. Injectable polydopamine nanoparticle-incorporated hydrogels for antiangiogenesis and stimulating tumoricidal immunity to inhibit metastasis and recurrence postresection[J]. ACS Appl Mater Interfaces, 2024, 16(47): 64447-62. doi:10.1021/acsami.4c10363
|
[32] |
Lin JY, Tan SI, Yi YC, et al. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC7002 for antioxidation, antibacterial and lead adsorption[J]. Environ Res, 2022, 206: 112283. doi:10.1016/j.envres.2021.112283
|
[33] |
Gong W, Huang HB, Wang XC, et al. Coassembly of fiber hydrogel with antibacterial activity for wound healing[J]. ACS Biomater Sci Eng, 2023, 9(1): 375-87. doi:10.1021/acsbiomaterials.2c00716
|
[34] |
Solmaz H, Ulgen Y, Gulsoy M. Photobiomodulation of wound healing via visible and infrared laser irradiation[J]. Lasers Med Sci, 2017, 32(4): 903-10. doi:10.1007/s10103-017-2191-0
|
[35] |
Duan QQ, Wang JL, Zhang BY, et al. Polydopamine coated Au-Pt nanorods: enhanced photothermal properties and efficient reactive oxygen scavengers[J]. Colloids Surf B Biointerfaces, 2022, 210: 112247. doi:10.1016/j.colsurfb.2021.112247
|
[36] |
Li ZY, Qian CY, Zheng XD, et al. Collagen/chitosan/genipin hydrogel loaded with phycocyanin nanoparticles and ND-336 for diabetic wound healing[J]. Int J Biol Macromol, 2024, 266: 131220. doi:10.1016/j.ijbiomac.2024.131220
|