南方医科大学学报 ›› 2023, Vol. 43 ›› Issue (5): 783-792.doi: 10.12122/j.issn.1673-4254.2023.05.14

• • 上一篇    下一篇

嵌入式3D打印多孔硅胶义眼台及其表面修饰

赵 宏,王艺霖,汪艳芳,宫海环,殷俊飞扬,崔晓军,张剑凯,黄文华   

  1. 广东医科大学基础医学院人体解剖学教研室,东莞市干细胞与再生组织工程重点实验室,广东 东莞 523808;南方医科大学基础医学院人体解剖学国家重点学科,广东省数字医学与生物力学重点实验室,广东省医学3D打印应用转化工程技术研究中心,广东 广州 510515;南方医科大学附属广东省人民医院广东省医学科学院,广东 广州 510080
  • 出版日期:2023-05-20 发布日期:2023-06-12

Embedded 3D printing of porous silicon orbital implants and its surface modification

ZHAO Hong, WANG Yilin, WANG Yanfang, GONG Haihuan, YINJUN Feiyang, CUI Xiaojun, ZHANG Jiankai, HUANG Wenhua   

  1. Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China; National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial People's Hospital Affiliated to Southern Medical University, Guangdong Academy of Medical Science, Guangzhou 510080, China
  • Online:2023-05-20 Published:2023-06-12

摘要: 目的 制备个性化多孔硅胶义眼台并探讨表面修饰对硅胶义眼台性能的影响。方法 检测支撑介质的透明度、流动性及流变学性能,确定硅胶的最适打印参数。扫描电镜分析硅胶表面修饰前后的形貌变化;水接触角评估硅胶表面的亲疏水性;压缩试验测试多孔硅胶的压缩模量;将猪主动脉内皮细胞(PAOEC)与多孔硅胶支架共培养1、3、5 d后测试多孔硅胶的细胞相容性;大鼠皮下植入试验评估多孔硅胶的体内局部炎症反应。结果 确定多孔硅胶义眼台的最适打印参数为:支撑介质4 wt%、打印压力为1.0 bar,打印速度为6 mm/s;扫描电镜显示硅胶表面聚多巴胺、胶原蛋白修饰成功,修饰后的硅胶表面亲水性显著提升(P<0.05),且压缩模量无显著变化(P>0.05);细胞毒性及增殖实验结果显示:修饰后的多孔硅胶无明显细胞毒性且能够促进PAOEC的黏附和增殖(P<0.05);植入大鼠皮下后局部组织未见明显炎症反应。结论 嵌入式3D打印技术能够制备孔隙均匀的多孔硅胶义眼台,表面修饰后的硅胶亲水性增加、生物相容性良好,为3D打印个性化义眼台的性能研究与临床应用奠定基础。

关键词: 义眼台, 嵌入式3D打印, 硅胶, 聚多巴胺, 胶原蛋白

Abstract: Objective To prepare customized porous silicone orbital implants using embedded 3D printing and assess the effect of surface modification on the properties of the implants. Methods The transparency, fluidity and rheological properties of the supporting media were tested to determine the optimal printing parameters of silicone. The morphological changes of silicone after modification were analyzed by scanning electron microscopy, and the hydrophilicity and hydrophobicity of silicone surface were evaluated by measuring the water contact angle. The compression modulus of porous silicone was measured using compression test. Porcine aortic endothelial cells (PAOECs) were co-cultured with porous silicone scaffolds for 1, 3 and 5 days to test the biocompatibility of silicone. The local inflammatory response to subcutaneous porous silicone implants was evaluated in rats. Results The optimal printing parameters of silicone orbital implants were determined as the following: supporting medium 4% (mass ratio), printing pressure 1.0 bar and printing speed 6 mm/s. Scanning electron microscopy showed that the silicone surface was successfully modified with polydopamine and collagen, which significantly improved hydrophilicity of the silicone surface (P<0.05) without causing significant changes in the compression modulus (P>0.05). The modified porous silicone scaffold had no obvious cytotoxicity and obviously promoted adhesion and proliferation of PAOECs (P<0.05). In rats bearing the subcutaneous implants, no obvious inflammation was observed in the local tissue. Conclusion Poprous silicone orbital implants with uniform pores can be prepared using embedded 3D printing technology, and surface modification obviously improves hydrophilicity and biocompatibility of the silicone implants for potential clinical application.

Key words: orbital implant, embedded 3D printing, silicone, polydopamine, collagen