南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (2): 409-421.doi: 10.12122/j.issn.1673-4254.2025.02.22

• • 上一篇    

基于改进RT-DETR的多尺度特征融合的高效轻量皮肤病理检测方法

任煜瀛(), 黄凌霄(), 杜方, 姚新波   

  1. 宁夏大学信息工程学院//宁夏“东数西算”人工智能与信息安全重点实验室//宁夏大数据与人工智能省部共建协同创新中心,宁夏 银川 750021
  • 收稿日期:2024-10-30 出版日期:2025-02-20 发布日期:2025-03-03
  • 通讯作者: 黄凌霄 E-mail:ran96822@stu.nxu.edu.cn;huanglx@nxu.edu.cn
  • 作者简介:任煜瀛,在读硕士研究生,E-mail: ran96822@stu.nxu.edu.cn
  • 基金资助:
    国家自然科学基金(62062058);宁夏高等学校科学研究项目(NYG2024033)

An efficient and lightweight skin pathology detection method based on multi-scale feature fusion using an improved RT-DETR model

Yuying REN(), Lingxiao HUANG(), Fang DU, Xinbo YAO   

  1. School of Information Engineering, Ningxia University// Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West//Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China
  • Received:2024-10-30 Online:2025-02-20 Published:2025-03-03
  • Contact: Lingxiao HUANG E-mail:ran96822@stu.nxu.edu.cn;huanglx@nxu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62062058)

摘要:

目的 针对皮肤病检测任务中存在皮肤病变区域多尺度、图像噪点干扰以及辅助诊疗设备资源有限影响检测准确性等问题,提出一种基于RT-DETR改进的高效轻量化皮肤病检测模型。 方法 引入轻量级FasterNet作为骨干网络,同时对FasterNetBlock模块进行重参数化改进。在颈部网络中引入卷积和注意力融合模块代替多头自注意力机制,形成AIFI-CAFM模块,从而增强模型捕获图像全局依赖关系和局部细节信息的能力。设计DRB-HSFPN特征金字塔网络替换跨尺度特征融合模块(CCFM),以融合不同尺度的上下文信息,提升颈部网络的语义特征表达能力。结合Inner-IoU和EIoU的优点,提出了Inner-EIoU替换原损失函数GIOU,进一步提高模型推理准确性和收敛速度。 结果 改进后的RT-DETR相较于原始模型,在HAM10000数据集上的mAP@50和mAP@50:95分别提升了4.5%和2.8%,检测速度FPS达到59.1帧/s。同时,改进模型的参数量为10.9M,计算量为19.3GFLOPs,相较于原始模型分别降低了46.0%和67.2%,验证了改进模型的有效性。 结论 本文提出的SD-DETR模型在降低参数量和计算量的同时,能够有效的提取并融合多尺度特征,从而显著提升了皮肤病检测任务的性能。

关键词: 皮肤病, 轻量级网络, 多尺度特征融合, 注意力机制, RT-DETR

Abstract:

Objective The presence of multi-scale skin lesion regions and image noise interference and limited resources of auxiliary diagnostic equipment affect the accuracy of skin disease detection in skin disease detection tasks. To solve these problems, we propose a highly efficient and lightweight skin disease detection model using an improved RT-DETR model. Method A lightweight FasterNet was introduced as the backbone network and the FasterNetBlock module was parametrically refined. A Convolutional and Attention Fusion Module (CAFM) was used to replace the multi-head self-attention mechanism in the neck network to enhance the ability of the AIFI-CAFM module for capturing global dependencies and local detail information. The DRB-HSFPN feature pyramid network was designed to replace the Cross-Scale Feature Fusion Module (CCFM) to allow the integration of contextual information across different scales to improve the semantic feature expression capacity of the neck network. Finally, combining the advantages of Inner-IoU and EIoU, the Inner-EIoU was used to replace the original loss function GIOU to further enhance the model's inference accuracy and convergence speed. Results The experimental results on the HAM10000 dataset showed that the improved RT-DETR model, as compared with the original model, had increased mAP@50 and mAP@50:95 by 4.5% and 2.8%, respectively, with a detection speed of 59.1 frames per second (FPS). The improved model had a parameter count of 10.9 M and a computational load of 19.3 GFLOPs, which were reduced by 46.0% and 67.2% compared to those of the original model, validating the effectiveness of the improved model. Conclusion The proposed SD-DETR model significantly improves the performance of skin disease detection tasks by effectively extracting and integrating multi-scale features while reducing both parameter count and computational load.

Key words: skin disease, lightweight network, multi-feature fusion, attention mechanism, RT-DETR