1 |
Willms RJ, Foley E. Mechanisms of epithelial growth and development in the zebrafish intestine[J]. Biochem Soc Trans, 2023, 51(3): 1213-24.
|
2 |
Luo LY, Zhang W, You SY, et al. The role of epithelial cells in fibrosis: Mechanisms and treatment[J]. Pharmacol Res, 2024, 202: 107144.
|
3 |
Kapsimali M. Epithelial cell behaviours during neurosensory organ formation[J]. Development, 2017, 144(11): 1926-36.
|
4 |
Lin H, Cheng Y, Zhang C. Research progress of pulmonary epithelioid hemangioendothelioma[J]. Zhongguo Fei Ai Za Zhi, 2019, 22(7): 470-6.
|
5 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-76.
|
6 |
González F, Boué S, Belmonte JCI. Methods for making induced pluripotent stem cells: reprogramming à la carte[J]. Nat Rev Genet, 2011, 12: 231-42.
|
7 |
Qin H, Zhao AD, Fu XB. Small molecules for reprogramming and transdifferentiation[J]. Cell Mol Life Sci, 2017, 74(19): 3553-75.
|
8 |
Ye J, Ge J, Zhang X, et al. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds[J]. Cell Res, 2016, 26(1): 34-45.
|
9 |
Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, et al. Small molecules for neural stem cell induction[J]. Stem Cells Dev, 2018, 27(5): 297-312.
|
10 |
Atkins H. Stem cell transplantation to treat multiple sclerosis[J]. JAMA, 2019, 321(2): 153-5.
|
11 |
Schmalzing M, Henes J, van Laar JM, et al. Editorial: Stem cell transplantation in autoimmune diseases (AID)[J]. Front Immunol, 2023, 14: 1150664.
|
12 |
Zhang DD, Wang GD, Qin LS, et al. Restoring mammary gland structures and functions with autogenous cell therapy[J]. Biomaterials, 2021, 277: 121075.
|
13 |
Xu W, Li H, Peng L, et al. Fish pluripotent stem-like cell line induced by small-molecule compounds from caudal fin and its developmental potentiality[J]. Front Cell Dev Biol, 2021, 9: 817779.
|
14 |
Nguyen KN, Bobba S, Richardson A, et al. Native and synthetic scaffolds for limbal epithelial stem cell transplantation[J]. Acta Biomater, 2018, 65: 21-35.
|
15 |
Rosa FF, Pires CF, Kurochkin I, et al. Direct reprogramming of fibroblasts into antigen-presenting dendritic cells[J]. Sci Immunol, 2018, 3(30): eaau4292.
|
16 |
Biddy BA, Kong WJ, Kamimoto K, et al. Single-cell mapping of lineage and identity in direct reprogramming[J]. Nature, 2018, 564: 219-24.
|
17 |
Liuyang SJ, Wang G, Wang YL, et al. Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming[J]. Cell Stem Cell, 2023, 30(4): 450-9. e9.
|
18 |
Uko NE, Güner OF, Matesic DF, et al. Akt pathway inhibitors[J]. Curr Top Med Chem, 2020, 20(10): 883-900.
|
19 |
Wu JH, Limmer AL, Narayanan D, et al. The novel AKT inhibitor afuresertib suppresses human Merkel cell carcinoma MKL‐1 cell growth[J]. Clin Exp Dermatol, 2021, 46(8): 1551-4.
|
20 |
Xue WH, Yang L, Chen CX, et al. Wnt/β‑catenin-driven EMT regulation in human cancers[J]. Cell Mol Life Sci, 2024, 81(1): 79.
|
21 |
Lee S, Choi EJ, Cho EJ, et al. Inhibition of PI3K/Akt signaling suppresses epithelial-to-mesenchymal transition in hepatocellular carcinoma through the Snail/GSK-3/beta-catenin pathway[J]. Clin Mol Hepatol, 2020, 26(4): 529-39.
|
22 |
Spencer A, Yoon SS, Harrison SJ, et al. The novel AKT inhibitor afuresertib shows favorable safety, pharmacokinetics, and clinical activity in multiple myeloma[J]. Blood, 2014, 124(14): 2190-5.
|
23 |
Kim Y, Jeong J, Choi D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine[J]. Exp Mol Med, 2020, 52: 213-26.
|
24 |
Cao S, Yu S, Li D, et al. Chromatin accessibility dynamics during chemical induction of pluripotency[J]. Cell Stem Cell, 2018, 22(4): 529-42. e5.
|
25 |
Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment[J]. J Hematol Oncol, 2020, 13(1): 104.
|
26 |
Ding R, Zheng J, Li N, et al. DZNep, an inhibitor of the histone methyltransferase EZH2, suppresses hepatic fibrosis through regulating miR-199a-5p/SOCS7 pathway[J]. PeerJ, 2021, 9: e11374.
|
27 |
Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341(6146): 651-4.
|
28 |
Chase A, Cross NCP. Aberrations of EZH2 in cancer[J]. Clin Cancer Res, 2011, 17(9): 2613-8.
|
29 |
Lin J, Wu Y, Tian G, et al. Menin “reads” H3K79me2 mark in a nucleosomal context[J]. Science, 2023, 379(6633): 717-23.
|
30 |
Alford JS, Lampe JW, Brach D, et al. Conformational-design-driven discovery of EZM0414: a selective, potent SETD2 inhibitor for clinical studies[J]. ACS Med Chem Lett, 2022, 13(7): 1137-43.
|
31 |
Guan JY, Wang G, Wang JL, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605: 325-31.
|
32 |
Maherali N, Hochedlinger K. Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc[J]. Curr Biol, 2009, 19(20): 1718-23.
|
33 |
Zhao XX, An XL, Zhu XC, et al. Inhibiting transforming growth factor-β signaling regulates in vitro maintenance and differentiation of bovine bone marrow mesenchymal stem cells[J]. J Exp Zool B Mol Dev Evol, 2018, 330(8): 406-16.
|
34 |
Zhang YE. Non-smad pathways in TGF-beta signaling[J]. Cell Res, 2009, 19(1): 128-39.
|
35 |
Zheng J, Dai Q, Han K, et al. JNK-IN-8, a c-Jun N-terminal kinase inhibitor, improves functional recovery through suppressing neuroinflammation in ischemic stroke[J]. J Cell Physiol, 2020, 235(3): 2792-9.
|
36 |
Zhao M, Chen S, Yang ML, et al. Vitamin A regulates neural stem cell proliferation in rats after hypoxic-ischemic brain damage via RARɑ-mediated modulation of the β-catenin pathway[J]. Neurosci Lett, 2020, 727: 134922.
|
37 |
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation[J]. Cell Mol Life Sci, 2015, 72(8): 1559-76.
|
38 |
Jin Y, Teh SS, Lau HLN, et al. Retinoids as anti-cancer agents and their mechanisms of action[J]. Am J Cancer Res, 2022, 12(3): 938-60.
|
39 |
Das M, Pethe P. Differential expression of retinoic acid alpha and beta receptors in neuronal progenitors generated from human embryonic stem cells in response to TTNPB (a retinoic acid mimetic)[J]. Differentiation, 2021, 121: 13-24.
|