南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (12): 2585-2597.doi: 10.12122/j.issn.1673-4254.2025.12.06
• • 上一篇
卢晓宇1(
), 刘智慧1, 刘烨2, 庞天霄2, 卞蓉2, 郭玲2(
), 何学红2(
)
收稿日期:2025-06-30
出版日期:2025-12-20
发布日期:2025-12-22
通讯作者:
郭玲,何学红
E-mail:dfs1107@163.com;vivi_gling@163.com;lnzysnk@163.com
作者简介:卢晓宇,在读博士研究生,主治医师,E-mail: dfs1107@163.com
基金资助:
Xiaoyu LU1(
), Zhihui LIU1, Ye LIU2, Tianxiao PANG2, Rong BIAN2, Ling GUO2(
), Xuehong HE2(
)
Received:2025-06-30
Online:2025-12-20
Published:2025-12-22
Contact:
Ling GUO, Xuehong HE
E-mail:dfs1107@163.com;vivi_gling@163.com;lnzysnk@163.com
摘要:
目的 明确参芪泄浊饮(SQXZD)的化学成分,并结合网络药理学及实验阐明SQXZD延缓大鼠肾纤维化的作用机制。 方法 通过Q Exactive高分辨液质联用系统(UPLC-Q Exactive/MS)鉴定SQXZD化学成分。基于SQXZD化学成分构建SQXZD延缓肾纤维化的成分-疾病靶点网络,并进行富集分析以筛选关键通路与作用靶标。将49只SPF级雄性SD大鼠随机分成空白组,假手术组,模型组,氯沙坦组(4.6 mg·kg-1·d-1)及SQXZD低、中、高剂量组(9.7、19.4、38.8 g·kg-1·d-1)。除空白组及假手术组,其他组大鼠均以单侧输尿管结扎法复制肾纤维化模型。造模成功并连续灌胃14 d后取材,HE染色观察术侧肾组织病理变化,Masson染色观察术侧肾组织胶原沉积面积,全自动生化分析仪检测血清BUN、Cr水平,ELISA法检测血清SOD、MDA、GSH-px、IL-6、TNF‑α水平;Western blotting及qRT-PCR检测各组大鼠术侧肾组织α-SMA、Col-Ⅰ、NAKED2、Rap1、B-raf、Raf-1、MEK3/6、p38MAPK、MEK、ERK1/2、p-ERK1/2、FoxO3a、p-FoxO3a及MnSOD表达及mRNA转录水平。 结果 从SQXZD中鉴定出263种化学成分;网络药理学获得SQXZD成分和肾纤维化疾病交集靶点170个,分析显示SQXZD延缓肾纤维化可能与MAPK、Rap1、FoxO等通路相关。动物实验显示,与假手术组比较,模型组大鼠术侧肾组织结构异常、纤维化面积扩大;血清BUN、Cr、MDA、IL-6、TNF-α水平升高(P<0.01),SOD及GSH-px水平下降(P<0.01);术侧肾组织α-SMA、Col-Ⅰ、NAKED2、Rap1、B-raf、MEK、ERK1/2、p-ERK1/2、MEK3/6、p38MAPK表达及其mRNA转录水平上调(P<0.01),Raf-1、FoxO3a、p-FoxO3a及MnSOD表达及其mRNA转录水平下调(P<0.01)。与模型组相比,各给药组大鼠术侧肾组织结构可见不同程度改善、纤维化面积可见不同程度减少;血清BUN、Cr、MDA、IL-6、TNF-α水平下降,SOD及GSH-px水平升高,SQXZD高剂量组及氯沙坦组差异具有统计学意义(P<0.05),SQXZD中剂量组差异具有统计学意义(P<0.01);术侧肾组织α-SMA、Col-Ⅰ、NAKED2、Rap1、B-raf、MEK、ERK1/2、p-ERK1/2、MEK3/6、p38MAPK表达及其mRNA转录水平下调,Raf-1、FoxO3a、p-FoxO3a及MnSOD表达及其mRNA转录水平上调,SQXZD低、高剂量组及氯沙坦组差异具有统计学意义(P<0.05),SQXZD中剂量组差异具有统计学意义(P<0.01)。 结论 SQXZD可改善肾功能、延缓肾纤维化,其机制可能是调控Rap1/MAPK/FoxO3a信号通路以改善氧化应激及炎症状态。
卢晓宇, 刘智慧, 刘烨, 庞天霄, 卞蓉, 郭玲, 何学红. 参芪泄浊饮通过调控Rap1/MAPK/FoxO3a信号通路改善氧化应激及炎症反应延缓大鼠肾纤维化[J]. 南方医科大学学报, 2025, 45(12): 2585-2597.
Xiaoyu LU, Zhihui LIU, Ye LIU, Tianxiao PANG, Rong BIAN, Ling GUO, Xuehong HE. Shenqi Xiezhuo Decoction alleviates renal fibrosis in rats by ameliorating oxidative stress and inflammation through the Rap1/MAPK/FoxO3a signaling pathway[J]. Journal of Southern Medical University, 2025, 45(12): 2585-2597.
| Time (min) | Aqueous phase proportion(%) | Organic phase proportion(%) |
|---|---|---|
| 1 | 98 | 2 |
| 5 | 80 | 20 |
| 10 | 50 | 50 |
| 15 | 20 | 80 |
| 20 | 5 | 95 |
| 27 | 5 | 95 |
| 28 | 98 | 2 |
| 30 | 98 | 2 |
表1 色谱梯度
Tab.1 Chromatographic gradient
| Time (min) | Aqueous phase proportion(%) | Organic phase proportion(%) |
|---|---|---|
| 1 | 98 | 2 |
| 5 | 80 | 20 |
| 10 | 50 | 50 |
| 15 | 20 | 80 |
| 20 | 5 | 95 |
| 27 | 5 | 95 |
| 28 | 98 | 2 |
| 30 | 98 | 2 |
| Gene | Primer sequences (5'-3') | Fragment length (bp) |
|---|---|---|
| α-SMA | F:ACCATCGGGAATGAACGCTT | 191 |
| R:CTGTCAGCAATGCCTGGGTA | ||
| Col1a1 | F:CGTGGAAACCTGATGTATGCTTG | 169 |
| R:CCTATGACTTCTGCGTCTGGTGA | ||
| NAKED2 | F:CGCCTCTGTCAATCATTCCTC | 205 |
| R:ATCTGTGTTGGGCTTCCTGCTATA | ||
| Rap1 | F:GGATTGAAGGCACCAACCAT | 144 |
| R:AGTAATTGAAGTGCTCCTTGCCG | ||
| Raf-1 | F:GATGCTGTCTACTCGGATTGGC | 116 |
| R:GAAGTTGCTCTGGAGTTGGGTC | ||
| B-raf | F:CGCAAGATGTGGTGTAACGG | 201 |
| R:AAGTTGTGGGTTGTCAGAGGAA | ||
| MEK | F:CGTGATGTCAAACCCTCCAAC | 135 |
| R:AGGAGCCATATAGGCAGCACAG | ||
| MEK3 | F:TGAAGATGTGCGACTTTGGC | 141 |
| R:CATCAGACTTGACGTTGTAGCCC | ||
| p38MAPK | F:ACCACGACCCTGATGATGAGC | 94 |
| R:TAGGTCAGGCTCTTCCATTCGT | ||
| ERK | F:GAGACATCCTCAGAGCACCCA | 216 |
| R:TGTTGATAAGCAGATTGGAGGG | ||
| Foxo3a | F:AACAGTACCGTGTTCGGACC | 119 |
| R:AGTGTCTGGTTGCCGTAGTG | ||
| MnSOD | F:TCTGGACAAACCTGAGCCCTAA | 133 |
| R:GAACCTTGGACTCCCACAGACA | ||
| GAPDH | F:CTGGAGAAACCTGCCAAGTATG | 138 |
| R:GGTGGAAGAATGGGAGTTGCT |
表2 引物序列
Tab.2 Primer sequences
| Gene | Primer sequences (5'-3') | Fragment length (bp) |
|---|---|---|
| α-SMA | F:ACCATCGGGAATGAACGCTT | 191 |
| R:CTGTCAGCAATGCCTGGGTA | ||
| Col1a1 | F:CGTGGAAACCTGATGTATGCTTG | 169 |
| R:CCTATGACTTCTGCGTCTGGTGA | ||
| NAKED2 | F:CGCCTCTGTCAATCATTCCTC | 205 |
| R:ATCTGTGTTGGGCTTCCTGCTATA | ||
| Rap1 | F:GGATTGAAGGCACCAACCAT | 144 |
| R:AGTAATTGAAGTGCTCCTTGCCG | ||
| Raf-1 | F:GATGCTGTCTACTCGGATTGGC | 116 |
| R:GAAGTTGCTCTGGAGTTGGGTC | ||
| B-raf | F:CGCAAGATGTGGTGTAACGG | 201 |
| R:AAGTTGTGGGTTGTCAGAGGAA | ||
| MEK | F:CGTGATGTCAAACCCTCCAAC | 135 |
| R:AGGAGCCATATAGGCAGCACAG | ||
| MEK3 | F:TGAAGATGTGCGACTTTGGC | 141 |
| R:CATCAGACTTGACGTTGTAGCCC | ||
| p38MAPK | F:ACCACGACCCTGATGATGAGC | 94 |
| R:TAGGTCAGGCTCTTCCATTCGT | ||
| ERK | F:GAGACATCCTCAGAGCACCCA | 216 |
| R:TGTTGATAAGCAGATTGGAGGG | ||
| Foxo3a | F:AACAGTACCGTGTTCGGACC | 119 |
| R:AGTGTCTGGTTGCCGTAGTG | ||
| MnSOD | F:TCTGGACAAACCTGAGCCCTAA | 133 |
| R:GAACCTTGGACTCCCACAGACA | ||
| GAPDH | F:CTGGAGAAACCTGCCAAGTATG | 138 |
| R:GGTGGAAGAATGGGAGTTGCT |
图3 "成分-靶点-疾病"网络图
Fig.3 "Component-Target-Disease" network diagram. Diamonds represent active components, and rectangles represent disease targets with a total of 1475 nodes and 11 241 edges.
图4 参芪泄浊饮延缓肾纤维化靶点的PPI网络图
Fig.4 PPI network diagram of the targets of SQXZD for delaying RF. Node color intensity corresponds to the Degree value, and darker colors indicate higher Degree values (169 nodes and 3682 edges).
图5 参芪泄浊饮延缓肾纤维化的GO功能富集分析
Fig.5 GO functional enrichment analysis of SQXZD in delaying RF. BP: Biological process; CC: Cellular component; MF: Molecular function.
| Group | BUN (mmol/L) | Cr (μmol/L) |
|---|---|---|
| Control | 4.94±0.29 | 47.48±2.62 |
| Sham | 7.18±0.32 | 55.48±1.10 |
| Model | 28.08±2.35** | 196.11±12.88** |
| Losartan | 18.97±1.01# | 166.99±4.07# |
| SQXZD low-dose | 23.49±1.09 | 178.97±6.42 |
| SQXZD medium-dose | 16.79±0.55▲ | 149.92±2.57▲ |
| SQXZD high-dose | 19.03±1.01# | 171.32±3.68# |
表3 参芪泄浊饮对UUO大鼠血清BUN、Cr的影响
Tab.3 Effects of SQXZD on serum BUN and Cr levels in rats with unilateral ureteral obstruction (UUO) (Mean±SD, n=5)
| Group | BUN (mmol/L) | Cr (μmol/L) |
|---|---|---|
| Control | 4.94±0.29 | 47.48±2.62 |
| Sham | 7.18±0.32 | 55.48±1.10 |
| Model | 28.08±2.35** | 196.11±12.88** |
| Losartan | 18.97±1.01# | 166.99±4.07# |
| SQXZD low-dose | 23.49±1.09 | 178.97±6.42 |
| SQXZD medium-dose | 16.79±0.55▲ | 149.92±2.57▲ |
| SQXZD high-dose | 19.03±1.01# | 171.32±3.68# |
| Group | SOD (U/mL) | MDA (μmol/L) | GSH-px (U/mL) |
|---|---|---|---|
| Control | 325.42±6.59 | 2.03±0.14 | 2582.35±54.22 |
| Sham | 257.27±16.71 | 2.36±0.05 | 2238.14±105.60 |
| Model | 87.01±2.08** | 8.92±0.94** | 668.21±6.81** |
| Losartan | 212.38±5.19# | 4.26±0.38# | 2048.18±45.04# |
| SQXZD low-dose | 183.70±5.04# | 7.50±0.52 | 1516.04±66.02# |
| SQXZD medium-dose | 270.46±5.87▲ | 2.90±0.11▲ | 2218.58±51.31▲ |
| SQXZD high-dose | 209.35±5.60# | 5.42±0.20# | 1684.99±52.96# |
表4 参芪泄浊饮对UUO大鼠血清SOD、MDA、GSH-px的影响
Tab.4 Effects of SQXZD on serum SOD, MDA and GSH-px levels in UUO rats (Mean±SD, n=5)
| Group | SOD (U/mL) | MDA (μmol/L) | GSH-px (U/mL) |
|---|---|---|---|
| Control | 325.42±6.59 | 2.03±0.14 | 2582.35±54.22 |
| Sham | 257.27±16.71 | 2.36±0.05 | 2238.14±105.60 |
| Model | 87.01±2.08** | 8.92±0.94** | 668.21±6.81** |
| Losartan | 212.38±5.19# | 4.26±0.38# | 2048.18±45.04# |
| SQXZD low-dose | 183.70±5.04# | 7.50±0.52 | 1516.04±66.02# |
| SQXZD medium-dose | 270.46±5.87▲ | 2.90±0.11▲ | 2218.58±51.31▲ |
| SQXZD high-dose | 209.35±5.60# | 5.42±0.20# | 1684.99±52.96# |
| Group | IL-6 | TNF-α |
|---|---|---|
| Control | 0.159±0.001 | 0.038±0.0003 |
| Sham | 0.177±0.005 | 0.040±0.0004 |
| Model | 0.309±0.010** | 0.056±0.0011** |
| Losartan | 0.243±0.004# | 0.051±0.0004# |
| SQXZD low-dose | 0.273±0.006 | 0.053±0.0006 |
| SQXZD medium-dose | 0.228±0.002▲ | 0.049±0.0003▲ |
| SQXZD high-dose | 0.252±0.005# | 0.051±0.0005# |
表5 参芪泄浊饮对UUO大鼠血清IL-6、TNF-α的影响
Tab.5 Effects of SQXZD on serum IL-6 and TNF‑α levels in UUO rats (Mean±SD, n=5)
| Group | IL-6 | TNF-α |
|---|---|---|
| Control | 0.159±0.001 | 0.038±0.0003 |
| Sham | 0.177±0.005 | 0.040±0.0004 |
| Model | 0.309±0.010** | 0.056±0.0011** |
| Losartan | 0.243±0.004# | 0.051±0.0004# |
| SQXZD low-dose | 0.273±0.006 | 0.053±0.0006 |
| SQXZD medium-dose | 0.228±0.002▲ | 0.049±0.0003▲ |
| SQXZD high-dose | 0.252±0.005# | 0.051±0.0005# |
图9 参芪泄浊饮对UUO大鼠术侧肾组织α-SMA、Col-Ⅰ、NAKED2表达的影响
Fig.9 Effects of SQXZD on expressions of α-SMA, Col-I and NAKED2 in the surgical-side kidneys of UUO rats. **P<0.01 vs Sham group; ##P<0.01, #P<0.05 vs Model group.
图10 参芪泄浊饮对UUO大鼠术侧肾组织α-SMA、Col1a1、NAKED2 mRNA转录水平的影响
Fig.10 Effects of SQXZD on mRNA transcription levels of α-SMA, Col1a1 and NAKED2 in the surgical-side kidneys of UUO rats. **P<0.01 vs Sham group; ##P<0.01, #P<0.05 vs Model group.
图11 参芪泄浊饮对UUO大鼠术侧肾组织Rap1、B-raf、Raf-1、MEK3/6、p38MAPK、MEK、ERK1/2、p-ERK1/2、FoxO3a、p-FoxO3a及MnSOD表达的影响
Fig.11 Effects of SQXZD on expressions of Rap1, B-raf, Raf-1, MEK3/6, p38MAPK, MEK, ERK1/2, p-ERK1/2, FoxO3a, p-FoxO3a and MnSOD in surgical-side kidneys of UUO rats. **P<0.01 vs Sham group; ##P<0.01, #P<0.05 vs Model group.
图12 参芪泄浊饮对UUO大鼠术侧肾组织Rap1、B-raf、Raf-1、MEK3、p38MAPK、MEK、ERK、FoxO3a及MnSOD mRNA转录水平的影响
Fig.12 Effects of SQXZD on mRNA transcription levels of Rap1, B-raf, Raf-1, MEK3, p38MAPK, MEK, ERK, FoxO3a and MnSOD in surgical-side kidneys of UUO rats.**P<0.01 vs Sham group; ##P<0.01, #P<0.05 vs Model group.
| [1] | Liu Y. Cellular and molecular mechanisms of renal fibrosis[J]. Nat Rev Nephrol, 2011, 7(12): 684-96. doi:10.1038/nrneph.2011.149 |
| [2] | Conway B, Hughes J. Cellular orchestrators of renal fibrosis[J]. Qjm, 2012, 105(7): 611-5. doi:10.1093/qjmed/hcr235 |
| [3] | Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis[J]. J Am Soc Nephrol, 2010, 21(11): 1819-34. doi:10.1681/asn.2010080793 |
| [4] | 卞帅博, 张 亮, 杨 璇. 1990~2021年中国慢性肾脏病疾病负担变化趋势及发病预测分析[J].实用临床医药杂志, 2025, 29(6): 89-93, 98. |
| [5] | Kramann R, DiRocco DP, Maarouf OH, et al. Matrix-producing cells in chronic kidney disease: origin, regulation, and activation[J]. Curr Pathobiol Rep, 2013, 1(4): 301-11. doi:10.1007/s40139-013-0026-7 |
| [6] | Su H, Wan C, Song A, et al. Oxidative stress and renal fibrosis: mechanisms and therapies[J]. Adv Exp Med Biol, 2019, 1165: 585-604. doi:10.1007/978-981-13-8871-2_29 |
| [7] | Papaconstantinou J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease[J]. Cells, 2019, 8(11): E1383. doi:10.3390/cells8111383 |
| [8] | Kao MP, Ang DS, Pall A, et al. Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options[J]. J Hum Hypertens, 2010, 24(1): 1-8. doi:10.1038/jhh.2009.70 |
| [9] | Davì G, Guagnano MT, Ciabattoni G, et al. Platelet activation in obese women: role of inflammation and oxidant stress[J]. JAMA, 2002, 288(16): 2008-14. doi:10.1001/jama.288.16.2008 |
| [10] | Duni A, Liakopoulos V, Roumeliotis S, et al. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne's thread[J]. Int J Mol Sci, 2019, 20(15): E3711. doi:10.3390/ijms20153711 |
| [11] | Lee OYA, Wong ANN, Ho CY, et al. Potentials of natural antioxidants in reducing inflammation and oxidative stress in chronic kidney disease[J]. Antioxidants: Basel, 2024, 13(6): 751. doi:10.3390/antiox13060751 |
| [12] | 梁 亮.何学红教授学术思想总结及肾衰方治疗慢性肾脏病的临床与实验研究[D]. 辽宁中医药大学, 2015. |
| [13] | ConsortiumUniProt. UniProt: the universal protein knowledgebase in 2023[J]. Nucleic Acids Res, 2023, 51(d1): D523-31. |
| [14] | Amberger JS, Hamosh A. Searching online mendelian inheritance in man (OMIM): a knowledgebase of human genes and genetic phenotypes[J]. Curr Protoc Bioinformatics, 2017, 58: 1.2.1-1.2.12. doi:10.1002/cpbi.27 |
| [15] | Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. doi:10.1002/cpbi.5 |
| [16] | Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update[J]. Nucleic Acids Res, 2020, 48(d1): D845-55. |
| [17] | Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(d1): D638-46. doi:10.1093/nar/gkac1000 |
| [18] | Sherman BT, Hao M, Qiu J, et al. DAVID a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res, 2022, 50(w1): W216-21. doi:10.1093/nar/gkac194 |
| [19] | Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules[J]. Sci Rep, 2017, 7: 42717. doi:10.1038/srep42717 |
| [20] | Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res, 2019, 47(w1): W357-64. doi:10.1093/nar/gkz382 |
| [21] | 马园园, 刘成海, 陶艳艳. 肾纤维化动物模型特点与研究进展[J]. 中国实验动物学报, 2018, 26(3): 398-403. |
| [22] | 李建省, 王英明, 闫燕顺, 等. “肾虚络瘀,肾络癥瘕”病机观与肾间质纤维化中自噬不足的相关性[J]. 中国实验方剂学杂志, 2023, 29(2):186-94. |
| [23] | Li W, Zhang Y, Wang Q, et al. 6-Gingerol ameliorates ulcerative colitis by inhibiting ferroptosis based on the integrative analysis of plasma metabolomics and network pharmacology[J]. Food Funct, 2024, 15(11): 6054-67. doi:10.1039/d4fo00952e |
| [24] | 邓 婷, 傅 强, 李志樑, 等. 6-姜酚对心肾综合征大鼠心肾功能的影响[J]. 实用医学杂志, 2025, 41(11): 1627-36. |
| [25] | Wadekar PP, Salunkhe VR. Formulation and evaluation of nanobiotherapeutics of Terminalia arjuna through plant tissue culture for atherosclerosis[J]. Future J Pharm Sci, 2024, 10(1): 42. doi:10.1186/s43094-024-00613-5 |
| [26] | Nie R, Yuan Z, Wu Y, et al. Time-dose response and mechanistic specificity of berberine in renal fibrosis from a multi-model integration perspective: a systematic review and meta-analysis on animal models[J]. Front Pharmacol, 2025, 16: 1600408. doi:10.3389/fphar.2025.1600408 |
| [27] | 陈章平, 李信晓, 郭胜楠, 等. GABRG2基因敲除小鼠和HT22细胞通过激活PKA/NF-κB信号通路影响MMP3的表达[J].宁夏医科大学学报, 2022, 44(7): 656-62. |
| [28] | 刘星辰, 王 璟, 刘博阳, 等. PTH缺失通过诱导肾脏细胞衰老和衰老相关分泌表型分子表达而加速肾脏纤维化[J]. 现代生物医学进展,2024, 24(16): 3006-12. |
| [29] | Agrud A, Subburaju S, Goel P, et al. Gabrb3 endothelial cell-specific knockout mice display abnormal blood flow, hypertension, and behavioral dysfunction[J]. Sci Rep, 2022, 12(1): 4922. doi:10.1038/s41598-022-08806-9 |
| [30] | 秦一冰, 吕 静, 战丽彬, 等. 基于“脉络-血管系统”理论探讨肾纤维化的发病机制[J]. 世界中西医结合杂志, 2024, 19(6): 1256-9, 1264. |
| [31] | 张晓珣, 王 俊, 赵 宇, 等. 牛蒡子苷元对四氯化碳致大鼠肝纤维化的治疗作用[J]. 中国药理学与毒理学杂志, 2016, 30(1): 53-60. |
| [32] | García-Llorca A, Carta F, Supuran CT, et al. Carbonic anhydrase, its inhibitors and vascular function[J]. Front Mol Biosci, 2024, 11: 1338528. doi:10.3389/fmolb.2024.1338528 |
| [33] | Krishnan D, Liu L, Wiebe SA, et al. Carbonic anhydrase II binds to and increases the activity of the epithelial sodium-proton exchanger, NHE3[J]. Am J Physiol Renal Physiol, 2015, 309(4): F383-92. doi:10.1152/ajprenal.00464.2014 |
| [34] | Fang Z, Wang Q, Duan H, et al. 17β-Estradiol mediates TGFBR3/Smad2/3 signaling to attenuate the fibrosis of TGF‑β1-induced bovine endometrial epithelial cells via GPER[J]. J Cell Physiol, 2024, 239(1): 166-79. doi:10.1002/jcp.31153 |
| [35] | Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways[J]. Curr Opin Cell Biol, 1999, 11(2): 211-8. doi:10.1016/s0955-0674(99)80028-3 |
| [36] | Akhtar S, Al-Zaid B, El-Hashim AZ, et al. Impact of PAMAM delivery systems on signal transduction pathways in vivo: Modulation of ERK1/2 and p38 MAP kinase signaling in the normal and diabetic kidney[J]. Int J Pharm, 2016, 514(2): 353-63. doi:10.1016/j.ijpharm.2016.03.039 |
| [37] | Cheng X, Gao W, Dang Y, et al. Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation[J]. J Diabetes Res, 2013, 2013: 463740. doi:10.1155/2013/463740 |
| [38] | Wei X, Wang J, Deng YY, et al. Tubiechong patching promotes Tibia fracture healing in rats by regulating angiogenesis through the VEGF/ERK1/2 signaling pathway[J]. J Ethnopharmacol, 2023, 301: 115851. doi:10.1016/j.jep.2022.115851 |
| [39] | Wu Y, Wang L, Deng D, et al. Renalase protects against renal fibrosis by inhibiting the activation of the ERK signaling pathways[J]. Int J Mol Sci, 2017, 18(5): E855. doi:10.3390/ijms18050855 |
| [40] | Enslen H, Raingeaud J, Davis RJ. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6[J]. J Biol Chem, 1998, 273(3): 1741-8. doi:10.1074/jbc.273.3.1741 |
| [41] | Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development[J]. Nat Rev Cancer, 2009, 9(8): 537-49. doi:10.1038/nrc2694 |
| [42] | 阮颖新, 刘素雁, 李春媚, 等. p38MAPK通路参与肾间质纤维化的实验研究[J]. 临床泌尿外科杂志, 2007, (1): 63-6. |
| [43] | 霍振霞, 王保兴. p38MAPK在氧化应激诱导肾间质纤维化中的研究进展[J]. 中华临床医师杂志(电子版), 2016, 10(7): 1029-32. |
| [44] | Sari-Ak D, Torres-Gomez A, Yazicioglu YF, et al. Structural, biochemical, and functional properties of the Rap1-interacting adaptor molecule (RIAM)[J]. Biomed J, 2022, 45(2): 289-98. doi:10.1016/j.bj.2021.09.005 |
| [45] | Mochizuki N, Yamashita S, Kurokawa K, et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1[J]. Nature, 2001, 411(6841): 1065-8. doi:10.1038/35082594 |
| [46] | 朱雪婧. Rap1b对糖尿病肾病肾小管上皮细胞氧化损伤及凋亡的影响与机制研究[D]. 中南大学, 2011. |
| [47] | Kops GJ, Dansen TB, Polderman PE, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress[J]. Nature, 2002, 419(6904): 316-21. doi:10.1038/nature01036 |
| [48] | 李安琪, 祝晓梅, 黄九九, 等. 乳源六肽通过FoxO3a-MnSOD通路减少酒精诱导的氧化应激缓解肝损伤[J]. 安徽医科大学学报, 2022, 57(12): 1864-9. |
| [49] | 龚武清, 彭书生, 杜海林. 基于TNF-α/PI3K-Akt/NF-κB信号通路研究瑞舒伐他汀介导MCP-1对深静脉血栓大鼠模型凝血功能、炎症因子及纤溶指标的影响[J]. 中国老年学杂志, 2025, 45(13): 3272-6. |
| [50] | 李玮怡, 江 露, 张宗星, 等. 强骨康疏方通过抑制HIF-1α/BNIP3自噬信号通路减少类风湿性关节炎大鼠的破骨细胞分化[J]. 南方医科大学学报, 2025, 45(7): 1389-96. |
| [51] | Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure[J]. Adv Drug Deliv Rev, 2016, 97: 4-27. doi:10.1016/j.addr.2015.11.001 |
| [52] | Lv W, Booz GW, Fan F, et al. Oxidative stress and renal fibrosis: recent insights for the development of novel therapeutic strategies[J]. Front Physiol, 2018, 9: 105. doi:10.3389/fphys.2018.00105 |
| [53] | Kuppe C, Ibrahim MM, Kranz J, et al. Decoding myofibroblast origins in human kidney fibrosis[J]. Nature, 2021, 589(7841): 281-6. doi:10.1038/s41586-020-2941-1 |
| [54] | Genovese F, Manresa AA, Leeming DJ, et al. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis[J]? Fibrogenesis Tissue Repair, 2014, 7(1): 4. doi:10.1186/1755-1536-7-4 |
| [55] | Sharma AK, Mauer SM, Kim Y, et al. Interstitial fibrosis in obstructive nephropathy[J]. Kidney Int, 1993, 44(4): 774-88. doi:10.1038/ki.1993.312 |
| [56] | Locatelli F, Canaud B, Eckardt KU, et al. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome[J]. Nephrol Dial Transplant, 2003, 18(7): 1272-80. doi:10.1093/ndt/gfg074 |
| [57] | Fassett RG, Robertson IK, Ball MJ, et al. Effects of atorvastatin on oxidative stress in chronic kidney disease[J]. Nephrology: Carlton, 2015, 20(10): 697-705. doi:10.1111/nep.12502 |
| [58] | Zachara BA. Chapter five selenium and selenium-dependent antioxidants in chronic kidney disease[J]. Adv Clin Chem, 2015, 68: 131-51. doi:10.1016/bs.acc.2014.11.006 |
| [59] | Tsikas D. Assessment of lipid peroxidation by measuring malon-dialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges[J]. Anal Biochem, 2017, 524: 13-30. doi:10.1016/j.ab.2016.10.021 |
| [60] | Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update[J]. Front Immunol, 2017, 8: 405. doi:10.3389/fimmu.2017.00405 |
| [61] | Meldrum KK, Misseri R, Metcalfe P, et al. TNF-alpha neutralization ameliorates obstruction-induced renal fibrosis and dysfunction[J]. Am J Physiol Regul Integr Comp Physiol, 2007, 292(4): R1456-64. doi:10.1152/ajpregu.00620.2005 |
| [62] | Wittchen ES, Worthylake RA, Kelly P, et al. Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function[J]. J Biol Chem, 2005, 280(12): 11675-82. doi:10.1074/jbc.m412595200 |
| [63] | 吴华英, 邓 凯, 李 静, 等. 益气活血方调控cAMP/Epac1/Rap1信号改善冠心病气虚血瘀证大鼠的验证[J]. 中国实验方剂学杂志, 2024,30(18): 107-16. |
| [64] | 沈鑫蕾, 朱清如, 余文凯, 等. 盐炙车前子调控肾小管上皮-间充质转化改善肾纤维化的机制研究[J].中国中药杂志, 2025, 50(5):1195-208. |
| [65] | 郭锦晨. 健脾化湿清热通络法改善类风湿关节炎患者SOD的数据挖掘研究及对AMPK-FoxO3a-MnSOD信号通路的影响[D]. 安徽中医药大学, 2018. |
| [66] | 孙荣嵘, 冯小华, 王婷婷, 等. AKT/FoxO3a通路在白藜芦醇抑制大鼠肾脏间质纤维化中的作用[J]. 药物评价研究, 2019, 42(11):2165-8. |
| [67] | 杨伟源, 李 理, 郑林鑫, 等. EGFR/Foxo3a/Snail1通路在博来霉素肺纤维化小鼠中的作用机制探讨[J]. 中国呼吸与危重监护杂志, 2020,19(4): 371-8. |
| [1] | 王静娴, 任自敬, 周佩洋. S1PR5激动与过表达通过调控氧化应激增强脑微血管内皮细胞屏障功能抵抗氧糖剥夺/复氧复糖损伤[J]. 南方医科大学学报, 2025, 45(7): 1451-1459. |
| [2] | 张安邦, 孙秀颀, 庞博, 吴远华, 时靖宇, 张宁, 叶涛. 电针预处理通过调节肠道-大脑轴及Nrf2/HO-1信号通路抑制铁死亡减轻大鼠脑缺血再灌注损伤[J]. 南方医科大学学报, 2025, 45(5): 911-920. |
| [3] | 高志, 吴傲, 胡仲翔, 孙培养. 类风湿性关节炎中氧化应激与免疫浸润的生物信息学分析[J]. 南方医科大学学报, 2025, 45(4): 862-870. |
| [4] | 黄鹏伟, 陈洁, 邹金虎, 高雪锋, 曹虹. 槲皮素促进应激颗粒G3BP1解聚改善HIV-1 gp120诱导的星形胶质细胞神经毒性[J]. 南方医科大学学报, 2025, 45(2): 304-312. |
| [5] | 曹周芳, 汪元, 王梦娜, 孙玥, 刘菲菲. LINC00837/miR-671-5p/SERPINE2功能轴促进类风湿关节炎成纤维细胞样滑膜细胞的恶性病理学过程[J]. 南方医科大学学报, 2025, 45(2): 371-378. |
| [6] | 林淑娴, 郭丽娜, 马燕, 熊尧, 何盈犀, 许欣筑, 盛雯, 许素哗, 邱峰. 植物乳植杆菌ZG03通过其代谢物短链脂肪酸缓解斑马鱼的氧化应激[J]. 南方医科大学学报, 2025, 45(10): 2223-2230. |
| [7] | 罗维, 王宇航, 刘延松, 王媛媛, 艾磊. 高糖环境通过抑制免疫反应基因1的表达诱导巨噬细胞促炎性M1型极化[J]. 南方医科大学学报, 2025, 45(1): 1-9. |
| [8] | 张玉如, 万磊, 方昊翔, 李方泽, 王丽文, 李柯霏, 闫佩文, 姜辉. miR-155-5p介导PIK3R1负调控PI3K/AKT信号通路促进原发性干燥综合征人唾液腺上皮细胞增殖[J]. 南方医科大学学报, 2025, 45(1): 65-71. |
| [9] | 戴荣, 曹泽平, 刘传娇, 葛永, 程梦, 王伟丽, 陈义珍, 张磊, 王亿平. 清肾颗粒通过调控外泌体、miR-330-3p以及CREBBP表达抑制小鼠肾纤维化[J]. 南方医科大学学报, 2024, 44(8): 1431-1440. |
| [10] | 张钰明, 夏士程, 张淋淋, 陈梦茜, 刘晓婧, 高琴, 叶红伟. 金银花提取物对小鼠阿霉素肝脏损伤的保护作用[J]. 南方医科大学学报, 2024, 44(8): 1571-1581. |
| [11] | 任志军, 刁建新, 王奕婷. 芎归汤通过抑制氧化应激诱导的心肌凋亡减轻小鼠心梗后心衰引起的心肌损伤[J]. 南方医科大学学报, 2024, 44(7): 1416-1424. |
| [12] | 梁国新, 唐红悦, 郭畅, 张明明. miR-224-5p调控PI3K/Akt/FoxO1轴抑制氧化应激减轻缺氧/复氧诱导的心肌细胞损伤[J]. 南方医科大学学报, 2024, 44(6): 1173-1181. |
| [13] | 陈国栋, 罗素新. 秋水仙碱通过激活AMPK减轻小鼠心肌缺血再灌注损伤[J]. 南方医科大学学报, 2024, 44(2): 226-235. |
| [14] | 凌旭光, 徐雯雯, 庞观来, 洪旭星, 刘凤芹, 李 洋. 茶多酚通过抑制NLRP3炎症小体改善脓毒症小鼠的急性肺损伤[J]. 南方医科大学学报, 2024, 44(2): 381-386. |
| [15] | 徐小惠, 冯金梅, 罗 颖, 何昕觎, 臧金宝, 黄道超. NDUFA13过表达可减轻CCl4诱导的小鼠肝纤维化:基于抑制NLRP3活化[J]. 南方医科大学学报, 2024, 44(2): 201-209. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||