南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (1): 162-169.doi: 10.12122/j.issn.1673-4254.2025.01.19

• • 上一篇    

基于亚像素各向异性扩散的低剂量CT重建方法

唐诗洲1(), 苏若兰1, 李淑婷1, 赖珍珍1, 黄进红1,2, 牛善洲1,2()   

  1. 1.赣南师范大学,数学与计算机科学学院,江西 赣州 341000
    2.赣南师范大学,赣州市计算成像重点实验室,江西 赣州 341000
  • 收稿日期:2024-09-12 出版日期:2025-01-20 发布日期:2025-01-20
  • 通讯作者: 牛善洲 E-mail:206976182@qq.com;szniu@gnnu.edu.cn
  • 作者简介:唐诗洲,在读硕士研究生,E-mail: 206976182@qq.com
  • 基金资助:
    国家自然科学基金(62261002);江西省科技创新杰出青年人才资助计划项目(20192BCB23019);江西省重点研发计划一般项目(20202BBE53024);江西省“双千计划”科技创新高端人才项目(jxsq2019201061)

A low-dose CT reconstruction method using sub-pixel anisotropic diffusion

Shizhou TANG1(), Ruolan SU1, Shuting LI1, Zhenzhen LAI1, Jinhong HUANG1,2, Shanzhou NIU1,2()   

  1. 1.School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China
    2.Ganzhou Key Laboratory of Computational Imaging, Gannan Normal University, Ganzhou 341000, China
  • Received:2024-09-12 Online:2025-01-20 Published:2025-01-20
  • Contact: Shanzhou NIU E-mail:206976182@qq.com;szniu@gnnu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62261002)

摘要:

目的 提出一种基于亚像素各项异性扩散的低剂量CT重建方法。 方法 通过线性插值技术计算亚像素单元强度值及其二阶差分后,将计算得到的新的梯度信息引入到各项异性扩散过程中,并结合惩罚加权最小二乘模型对低剂量CT投影数据进行滤波,最后使用滤波反投影算法将恢复后的投影数据重建出CT图像。 结果 在Shepp-Logan体模实验中,与FBP、PWLS-Gibbs和PWLS-TV方法相比,新方法滤波后重建的CT图像在结构相似指数上分别提升了28.13%、5.49%和0.91%,在特征相似指数上分别提升了21.08%、1.78%和1.36%,并且在均方根误差上分别降低了69.59%、18.96%和3.90%。在XCAT体模实验中,与FBP、PWLS-Gibbs和PWLS-TV方法相比,新方法在结构相似指数上分别提高了14.24%、1.43%及7.89%,在特征相似指数上分别提高了9.61%、1.78%及5.66%,同时在均方根误差上分别降低了26.88%、9.41%及18.39%。在临床数据实验中,与FBP、PWLS-Gibbs和PWLS-TV方法重建的CT图像相比,新方法在结构相似指数上分别提升了19.24%、15.63%和3.68%,在特征相似指数上分别提升了4.30%、2.92%和0.43%,同时在均方根误差上分别降低了44.60%、36.84%和15.22%,并且在峰值信噪比上提升至28.39。 结论 本文提出的新方法可以有效去除低剂量CT图像的噪声和伪影,并可以保持结构细节信息。

关键词: 低剂量CT, 各向异性扩散, 亚像素, 图像重建

Abstract:

Objective We present a new low-dose CT reconstruction method using sub-pixel and anisotropic diffusion. Methods The sub-pixel intensity values and their second-order differences were obtained using linear interpolation techniques, and the new gradient information was then embedded into an anisotropic diffusion process, which was introduced into a penalty-weighted least squares model to reduce the noise in low-dose CT projection data. The high-quality CT image was finally reconstructed using the classical filtered back-projection (FBP) algorithm from the estimated data. Results In the Shepp-Logan phantom experiments, the structural similarity (SSIM) index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 28.13%, 5.49%, and 0.91%, the feature similarity (FSIM) index was increased by 21.08%, 1.78%, and 1.36%, and the root mean square error (RMSE) was reduced by 69.59%, 18.96%, and 3.90%, respectively. In the digital XCAT phantom experiments, the SSIM index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 14.24%, 1.43% and 7.89%, the FSIM index was increased by 9.61%, 1.78% and 5.66%, and the RMSE was reduced by 26.88%, 9.41% and 18.39%, respectively. In clinical experiments, the SSIM index of the image reconstructed using the proposed algorithm was increased by 19.24%, 15.63% and 3.68%, the FSIM index was increased by 4.30%, 2.92% and 0.43%, and the RMSE was reduced by 44.60%, 36.84% and 15.22% in comparison with FBP, PWLS-Gibbs and PWLS-TV algorithms, respectively. Conclusion The proposed method can effectively reduce the noises and artifacts while maintaining the structural details in low-dose CT images.

Key words: low-dose computed tomography, anisotropic diffusion, sub-pixel, image reconstruction