1 |
Zhang XX, Wang XB, Xue ZW, et al. Prevention properties on cerebral ischemia reperfusion of medicine food homologous Dioscorea yam-derived diosgenin based on mediation of potential targets[J]. Food Chem, 2021, 345: 128672.
|
2 |
Poh L, Kang SW, Baik SH, et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke[J]. Brain Behav Immun, 2019, 75: 34-47.
|
3 |
Lou Z, Wang AP, Duan XM, et al. Upregulation of NOX2 and NOX4 mediated by TGF‑β signaling pathway exacerbates cerebral ischemia/reperfusion oxidative stress injury[J]. Cell Physiol Biochem, 2018, 46(5): 2103-13.
|
4 |
Stegner D, Klaus V, Nieswandt B. Platelets as modulators of cerebral ischemia/reperfusion injury[J]. Front Immunol, 2019, 10: 2505.
|
5 |
Lipton P. Ischemic cell death in brain neurons[J]. Physiol Rev, 1999, 79(4): 1431-568.
|
6 |
Martin HGS, Wang YT. Blocking the deadly effects of the NMDA receptor in stroke[J]. Cell, 2010, 140(2): 174-6.
|
7 |
Han YL, Li XW, Yang L, et al. Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated calcium homeostasis dysregulation in mice[J]. J Ginseng Res, 2022, 46(4): 515-25.
|
8 |
Xu ZX, Xu BY, Xia T, et al. Relationship between intracellular Ca²⁺ and ROS during fluoride-induced injury in SH-SY5Y cells[J]. Environ Toxicol, 2013, 28(6): 307-12.
|
9 |
Mäkitie RE, Haanpää M, Valta H, et al. Skeletal characteristics of WNT1 osteoporosis in children and young adults[J]. J Bone Miner Res, 2016, 31(9): 1734-42.
|
10 |
Li N, Wu XT, Zhuang W, et al. Soy and isoflavone consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomized trials in humans[J]. Mol Nutr Food Res, 2020, 64(4): e1900751.
|
11 |
Applegate CC, Rowles JL, Ranard KM, et al. Soy consumption and the risk of prostate cancer: an updated systematic review and meta-analysis[J]. Nutrients, 2018, 10(1): 40.
|
12 |
赵士弟, 陈 耀, 姜丽娜, 等. 大豆异黄酮对脑缺血/再灌注诱导的线粒体损伤和脑细胞凋亡的影响[J]. 中国病理生理杂志, 2014, 30(12): 2172-8. DOI: 10.3969/j.issn.1000-4718.2014.12.010
|
13 |
赵士弟, 陈 耀, 董银凤, 等. 大豆异黄酮对全脑缺血/再灌注大鼠海马神经细胞凋亡的影响[J]. 上海交通大学学报: 医学版, 2015, 35(4): 521-9.
|
14 |
李 晒, 李 丽, 闵思敏, 等. 大豆异黄酮可减轻大鼠脑缺血/再灌注损伤: 基于抑制铁死亡及炎症级联反应[J]. 南方医科大学学报, 2023, 43(2): 323-31.
|
15 |
Kühl M, Sheldahl LC, Malbon CC, et al. Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus [J]. J Biol Chem, 2000, 275(17): 12701-11.
|
16 |
Brossia-Root LJ, Cotroneo TM, Hish G. Anesthesia and Analgesia for Research Animals[M]. Cham: Springer International Publishing, 2019: 13-34.
|
17 |
Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91.
|
18 |
Paxinos G.《大鼠脑立体定位图谱》[M]. 北京: 人民卫生出版社, 2005.
|
19 |
Kristián T, Siesjö BK. Calcium in ischemic cell death[J]. Stroke, 1998, 29(3): 705-18.
|
20 |
Al-Mufti F, Amuluru K, Roth W, et al. Cerebral ischemic reperfusion injury following recanalization of large vessel occlusions[J]. Neurosurgery, 2018, 82(6): 781-9.
|
21 |
Soares ROS, Losada DM, Jordani MC, et al. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies[J]. Int J Mol Sci, 2019, 20(20): 5034.
|
22 |
Mao R, Zong NN, Hu YJ, et al. Neuronal death mechanisms and therapeutic strategy in ischemic stroke[J]. Neurosci Bull, 2022, 38(10): 1229-47.
|
23 |
Manzanero S, Santro T, Arumugam TV. Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury[J]. Neurochem Int, 2013, 62(5): 712-8.
|
24 |
Wang YL, Tian YX, Zhao JX, et al. Effect of electroacupuncture on gene expression in calcium signaling pathway in hippocampal cells in mice with cerebral ischemia reperfusion[J]. J Tradit Chin Med, 2017, 37(2): 252-60.
|
25 |
Hu Y, Deng H, Xu SX, et al. MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion injury[J]. Int J Mol Sci, 2015, 16(10): 24895-917.
|
26 |
Schanne FA, Kane AB, Young EE, et al. Calcium dependence of toxic cell death: a final common pathway[J]. Science, 1979, 206(4419): 700-2.
|
27 |
Uddin MS, Kabir MT. Emerging signal regulating potential of genistein against Alzheimer's disease: a promising molecule of interest[J]. Front Cell Dev Biol, 2019, 7: 197.
|
28 |
Chen LR, Chen KH. Utilization of isoflavones in soybeans for women with menopausal syndrome: an overview[J]. Int J Mol Sci, 2021, 22(6): 3212.
|
29 |
Basak K, Manjunatha M, Dutta PK. Review of laser speckle-based analysis in medical imaging[J]. Med Biol Eng Comput, 2012, 50(6): 547-58.
|
30 |
刘 宇, 孟 然, 闫 峰, 等. 激光多普勒血流仪评价活体大鼠大脑中动脉栓塞模型成功的可行性分析[J]. 中国病理生理杂志, 2011, 27(3): 620-4.
|
31 |
Shin S, Fu JL, Shin WK, et al. Association of food groups and dietary pattern with breast cancer risk: a systematic review and meta-analysis[J]. Clin Nutr, 2023, 42(3): 282-97.
|
32 |
Uifălean A, Schneider S, Ionescu C, et al. Soy isoflavones and breast cancer cell lines: molecular mechanisms and future perspectives[J]. Molecules, 2015, 21(1): E13.
|
33 |
Sahin I, Bilir B, Ali S, et al. Soy isoflavones in integrative oncology: increased efficacy and decreased toxicity of cancer therapy[J]. Integr Cancer Ther, 2019, 18: 1534735419835310.
|
34 |
Castelló-Ruiz M, Torregrosa G, Burguete MC, et al. Soy-derived phytoestrogens as preventive and acute neuroprotectors in experimental ischemic stroke: influence of rat strain[J]. Phytomedicine, 2011, 18(6): 513-5.
|
35 |
Zins K, Schäfer R, Paulus P, et al. Frizzled2 signaling regulates growth of high-risk neuroblastomas by interfering with β‑catenin-dependent and β‑catenin-independent signaling pathways[J]. Oncotarget, 2016, 7(29): 46187-202.
|
36 |
Zhao CH, Bu XM, Wang W, et al. GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation[J]. PLoS One, 2014, 9(1): e85058.
|
37 |
Maeda K, Takahashi N, Kobayashi Y. Roles of Wnt signals in bone resorption during physiological and pathological states[J]. J Mol Med, 2013, 91(1): 15-23.
|
38 |
刘 丽, 龙鼎新. Wnt信号通路在神经系统发育中的作用研究进展[J]. 中南医学科学杂志, 2017, 45(3): 303-6.
|
39 |
Wang RY, Wang M, He SB, et al. Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: an overview of regulatory mechanisms and therapeutic reagents[J]. Front Pharmacol, 2020, 11: 872.
|
40 |
Pittas K, Vrachatis DA, Angelidis C, et al. The role of calcium handling mechanisms in reperfusion injury[J]. Curr Pharm Des, 2018, 24(34): 4077-89.
|
41 |
Zhou SS, He F, Chen AH, et al. Suppression of rat Frizzled-2 attenuates hypoxia/reoxygenation-induced Ca2+ accumulation in rat H9c2 cells[J]. Exp Cell Res, 2012, 318(13): 1480-91.
|
42 |
Hu X, Zhou CJ, He GL, et al. Inhibition of Frizzled-2 by small interfering RNA protects rat hepatic BRL-3A cells against cytotoxicity and apoptosis induced by Hypoxia/Reoxygenation[J]. Gastroenterol Hepatol, 2020, 43(3): 107-16.
|
43 |
Niu LJ, Xu RX, Zhang P, et al. Suppression of Frizzled-2-mediated Wnt/Ca²⁺ signaling significantly attenuates intracellular calcium accumulation in vitro and in a rat model of traumatic brain injury[J]. Neuroscience, 2012, 213: 19-28.
|
44 |
Xu XF, Zhang MF, Xu FY, et al. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities[J]. Mol Cancer, 2020, 19(1): 165.
|
45 |
Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: new hope in neuroprotection[J]. Mol Brain, 2018, 11(1): 15.
|
46 |
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection[J]. Prog Neurobiol, 2014, 115: 157-88.
|