1 |
Tolosa E, Garrido A, Scholz SW, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5): 385-97.
|
2 |
Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment[J]. J Neurol Neurosurg Psychiatry, 2020, 91(8): 795-808.
|
3 |
Kwon EH, Steininger J, Scherbaum R, et al. Large-fiber neuropathy in Parkinson's disease: a narrative review[J]. Neurol Res Pract, 2024, 6(1): 51.
|
4 |
Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuro-inflammation and Parkinson's disease-from neurodegeneration to therapeutic opportunities[J]. Cells, 2022, 11(18): 2908.
|
5 |
Pajares M, Rojo AI, Manda G, et al. Inflammation in Parkinson's disease: mechanisms and therapeutic implications[J]. Cells, 2020, 9(7): 1687.
|
6 |
Moradi Vastegani S, Nasrolahi A, Ghaderi S, et al. Mitochondrial dysfunction and Parkinson's disease: pathogenesis and therapeutic strategies[J]. Neurochem Res, 2023, 48(8): 2285-308.
|
7 |
Ryan BJ, Hoek S, Fon EA, et al. Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease[J]. Trends Biochem Sci, 2015, 40(4): 200-10.
|
8 |
Chen CY, Yang C, Wang J, et al. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer's disease[J]. J Pineal Res, 2021, 71(4): e12774.
|
9 |
Zuo L, Motherwell MS. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease[J]. Gene, 2013, 532(1): 18-23.
|
10 |
O’Hanlon ME, Tweedy C, Scialo F, et al. Mitochondrial electron transport chain defects modify Parkinson's disease phenotypes in a Drosophila model[J]. Neurobiol Dis, 2022, 171: 105803.
|
11 |
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease[J]. Neuron, 2015, 85(2): 257-73.
|
12 |
Kamienieva I, Duszyński J, Szczepanowska J. Multitasking guardian of mitochondrial quality: Parkin function and Parkinson's disease[J]. Transl Neurodegener, 2021, 10(1): 5.
|
13 |
Liu J, Liu WJ, Lu YQ, et al. Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models[J]. Autophagy, 2018, 14(5): 845-61.
|
14 |
Barazzuol L, Giamogante F, Brini M, et al. PINK1/parkin mediated mitophagy, Ca2+ signalling, and ER-mitochondria contacts in Parkinson's disease[J]. Int J Mol Sci, 2020, 21(5): 1772.
|
15 |
Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells[J]. Curr Opin Cell Biol, 2015, 33: 95-101.
|
16 |
Wasner K, Smajic S, Ghelfi J, et al. Parkin deficiency impairs mitochondrial DNA dynamics and propagates inflammation[J]. Mov Disord, 2022, 37(7): 1405-15.
|
17 |
Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nat Cell Biol, 2010, 12(2): 119-31.
|
18 |
Ren ZL, Wang CD, Wang T, et al. Ganoderma lucidum extract ameliorates MPTP-induced Parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis[J]. Acta Pharmacol Sin, 2019, 40(4): 441-50.
|
19 |
Chia SJ, Tan EK, Chao YX. Historical perspective: models of Parkinson's disease[J]. Int J Mol Sci, 2020, 21(7): E2464.
|
20 |
Xu JJ, Li YY, Zhu H, et al. Therapeutic function of a novel rat induced pluripotent stem cell line in a 6-OHDA-induced rat model of Parkinson's disease[J]. Int J Mol Med, 2022, 50(6): 140.
|
21 |
Noda S, Sato S, Fukuda T, et al. Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice[J]. Neurobiol Dis, 2020, 136: 104717.
|
22 |
Li J, Yang DM, Li ZP, et al. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases[J]. Ageing Res Rev, 2023, 84: 101817.
|
23 |
Zhang XW, Feng N, Liu YC, et al. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy[J]. Sci Adv, 2022, 8(32): eabo0789.
|
24 |
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, et al. The involvement of neuroinflammation in the onset and progression of Parkinson's disease[J]. Int J Mol Sci, 2023, 24(19): 14582.
|
25 |
Quinn PMJ, Moreira PI, Ambrósio AF, et al. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation[J]. Acta Neuropathol Commun, 2020, 8(1): 189.
|
26 |
Iorio R, Celenza G, Petricca S. Multi-target effects of β‑caryo-phyllene and carnosic acid at the crossroads of mitochondrial dysfunction and neurodegeneration: from oxidative stress to microglia-mediated neuroinflammation[J]. Antioxidants, 2022, 11(6): 1199.
|
27 |
Sun K, Jing XZ, Guo JC, et al. Mitophagy in degenerative joint diseases[J]. Autophagy, 2021, 17(9): 2082-92.
|
28 |
Panicker N, Kam TI, Wang H, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease[J]. Neuron, 2022, 110(15): 2422-37.e9.
|
29 |
Lee E, Hwang I, Park S, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration[J]. Cell Death Differ, 2019, 26(2): 213-28.
|
30 |
Zengeler KE, Lukens JR. Taking the parkin brakes off of neuronal NLRP3 drives inflammasome activation and neurodegeneration in Parkinson's disease[J]. Neuron, 2022, 110(15): 2356-8.
|
31 |
Sliter DA, Martinez J, Hao L, et al. Parkin and PINK1 mitigate STING-induced inflammation[J]. Nature, 2018, 561(7722): 258-62.
|
32 |
Eldeeb MA, Thomas RA, Ragheb MA, et al. Mitochondrial quality control in health and in Parkinson's disease[J]. Physiol Rev, 2022, 102(4): 1721-55.
|