1 |
Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension[J]. J Clin Invest, 2012, 122(12): 4306-13.
|
2 |
Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53(1): 1801913.
|
3 |
Sitbon O, Gomberg-Maitland M, Granton J, et al. Clinical trial design and new therapies for pulmonary arterial hypertension[J]. Eur Respir J, 2019, 53(1): 1801908.
|
4 |
Liu LM, Wei YQ, Giunta S, et al. Potential role of cellular senescence in pulmonary arterial hypertension[J]. Clin Exp Pharmacol Physiol, 2022, 49(10): 1042-9.
|
5 |
Semen KO, Bast A. Senescence in pulmonary arterial hypertension: is there a link?[J]. Curr Opin Pulm Med, 2022, 28(4): 303-6.
|
6 |
Noureddine H, Gary-Bobo G, Alifano M, et al. Pulmonary artery smooth muscle cell senescence is a pathogenic mechanism for pulmonary hypertension in chronic lung disease[J]. Circ Res, 2011, 109(5): 543-53.
|
7 |
Wang AP, Yang F, Tian Y, et al. Pulmonary artery smooth muscle cell senescence promotes the proliferation of PASMCs by paracrine IL-6 in hypoxia-induced pulmonary hypertension[J]. Front Physiol, 2021, 12: 656139.
|
8 |
Xia Y, Zhang X, An P, et al. Mitochondrial homeostasis in VSMCs as a central hub in vascular remodeling[J]. Int J Mol Sci, 2023, 24(4): 3483.
|
9 |
Zurlo G, Piquereau J, Moulin M, et al. Sirtuin 1 regulates pulmonary artery smooth muscle cell proliferation: role in pulmonary arterial hypertension[J]. J Hypertens, 2018, 36(5): 1164-77.
|
10 |
Jin JY, Chen JY, Wang YP. Aldehyde dehydrogenase 2 and arrhythmogenesis[J]. Heart Rhythm, 2022, 19(9): 1541-7.
|
11 |
Zhu WZ, Feng DC, Shi X, et al. The potential role of mitochondrial acetaldehyde dehydrogenase 2 in urological cancers from the perspective of ferroptosis and cellular senescence[J]. Front Cell Dev Biol, 2022, 10: 850145.
|
12 |
Zhu H, Wang Z, Dong Z, et al. Aldehyde dehydrogenase 2 deficiency promotes atherosclerotic plaque instability through accelerating mitochondrial ROS-mediated vascular smooth muscle cell senescence[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(7): 1782-92.
|
13 |
Xu T, Liu SY, Ma TT, et al. Aldehyde dehydrogenase 2 protects against oxidative stress associated with pulmonary arterial hypertension[J]. Redox Biol, 2017, 11: 286-96.
|
14 |
Liu HR, Hu Q, Ren K, et al. ALDH2 mitigates LPS-induced cardiac dysfunction, inflammation, and apoptosis through the cGAS/STING pathway[J]. Mol Med, 2023, 29(1): 171.
|
15 |
Li D, Shao NY, Moonen JR, et al. ALDH1A3 coordinates metabolism with gene regulation in pulmonary arterial hypertension[J]. Circulation, 2021, 143(21): 2074-90.
|
16 |
Qin ZR, Fang XW, Sun WH, et al. Deactylation by SIRT1 enables liquid-liquid phase separation of IRF3/IRF7 in innate antiviral immunity[J]. Nat Immunol, 2022, 23(8): 1193-207.
|
17 |
van der Feen DE, Berger RMF, Bartelds B. Converging paths of pulmonary arterial hypertension and cellular senescence[J]. Am J Respir Cell Mol Biol, 2019, 61(1): 11-20.
|
18 |
Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2012, 186(3): 261-72.
|
19 |
van der Feen DE, Bossers GPL, Hagdorn QAJ, et al. Cellular senescence impairs the reversibility of pulmonary arterial hypertension[J]. Sci Transl Med, 2020, 12(554): eaaw4974.
|
20 |
Roger L, Tomas F, Gire V. Mechanisms and regulation of cellular senescence[J]. Int J Mol Sci, 2021, 22(23): 13173.
|
21 |
Tan X, Chen YF, Zou SY, et al. ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy[J]. Free Radic Biol Med, 2023, 195: 219-30.
|
22 |
Zhang YM, Zou RJ, Abudureyimu M, et al. Mitochondrial aldehyde dehydrogenase rescues against diabetic cardiomyopathy through GSK3β-mediated preservation of mitochondrial integrity and Parkin-mediated mitophagy[J]. J Mol Cell Biol, 2024, 15(9): mjad056.
|
23 |
李小荣, 鲜 维, 谭 鑫, 等. 线粒体ALDH2通过调控自噬对缺氧性肺动脉高压的保护机制研究[J]. 蚌埠医学院学报, 2023, 48(1): 66-71.
|
24 |
Masson B, Le Ribeuz H, Sabourin J, et al. Orai1 inhibitors as potential treatments for pulmonary arterial hypertension[J]. Circ Res, 2022, 131(9): e102-19.
|
25 |
Al-Qazazi R, Lima PDA, Prisco SZ, et al. Macrophage-NLRP3 activation promotes right ventricle failure in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2022, 206(5): 608-24.
|
26 |
Veith C, Vartürk-Özcan I, Wujak M, et al. SPARC, a novel regulator of vascular cell function in pulmonary hypertension[J]. Circulation, 2022, 145(12): 916-33.
|
27 |
Neurohr GE, Terry RL, Lengefeld J, et al. Excessive cell growth causes cytoplasm dilution and contributes to senescence[J]. Cell, 2019, 176(5): 1083-97. e18.
|
28 |
Park CS, Kim SH, Yang HY, et al. Sox17 deficiency promotes pulmonary arterial hypertension via HGF/c-met signaling[J]. Circ Res, 2022, 131(10): 792-806.
|
29 |
Zhang J, Guo YY, Zhao XK, et al. The role of aldehyde dehydrogenase 2 in cardiovascular disease[J]. Nat Rev Cardiol, 2023, 20(7): 495-509.
|
30 |
Chang SC, Wu J, Jin JF, et al. Aldehyde dehydrogenase 2 (ALDH2) elicits protection against pulmonary hypertension via inhibition of ERK1/2-mediated autophagy[J]. Oxid Med Cell Longev,2022: 2555476.
|
31 |
Zhao Y, Wang BL, Zhang J, et al. ALDH2 (aldehyde dehydrogenase 2) protects against hypoxia-induced pulmonary hypertension[J]. Arterioscler Thromb Vasc Biol, 2019, 39(11): 2303-19.
|
32 |
Shahgaldi S, Kahmini FR. A comprehensive review of Sirtuins: with a major focus on redox homeostasis and metabolism[J]. Life Sci, 2021, 282: 119803.
|
33 |
Bost F, Kaminski L. The metabolic modulator PGC-1α in cancer[J]. Am J Cancer Res, 2019, 9(2): 198-211.
|
34 |
Kong SF, Cai BL, Nie QH. PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis[J]. Mol Genet Genomics, 2022, 297(3): 621-33.
|
35 |
Abu Shelbayeh O, Arroum T, Morris S, et al. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response[J]. Antioxidants, 2023, 12(5): 1075.
|
36 |
Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation[J]. Inflammation, 2020, 43(5): 1589-98.
|
37 |
Teng WL, Huang PH, Wang HC, et al. Pterostilbene attenuates particulate matter-induced oxidative stress, inflammation and aging in keratinocytes[J]. Antioxidants, 2021, 10(10): 1552.
|