| [1] |
Buja LM. Pathobiology of myocardial ischemia and reperfusion injury: models, modes, molecular mechanisms, modulation, and clinical applications[J]. Cardiol Rev, 2023, 31(5): 252-64. doi:10.1097/crd.0000000000000440
|
| [2] |
Crossman DC. The pathophysiology of myocardial ischaemia[J]. Heart, 2004, 90(5): 576-80. doi:10.1136/hrt.2003.029017
|
| [3] |
Heusch G. Myocardial ischemia: lack of coronary blood flow or myocardial oxygen supply/demand imbalance[J]? Circ Res, 2016, 119(2): 194-6. doi:10.1161/circresaha.116.308925
|
| [4] |
Davidson SM, Ferdinandy P, Andreadou I, et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week[J]. J Am Coll Cardiol, 2019, 73(1): 89-99. doi:10.1016/j.jacc.2018.09.086
|
| [5] |
Shi M, Huang FF, Deng CP, et al. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza [J]. Crit Rev Food Sci Nutr, 2019, 59(6): 953-64. doi:10.1080/10408398.2018.1474170
|
| [6] |
Hu SA, Yang ZH, Li L, et al. Salvianolic acid B alleviates liver injury by regulating lactate-mediated histone lactylation in macrophages[J]. Molecules, 2024, 29(1): 236. doi:10.3390/molecules29010236
|
| [7] |
Liu CL, Xie LX, Li M, et al. Salvianolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling[J]. PLoS One, 2007, 2(12): e1321. doi:10.1371/journal.pone.0001321
|
| [8] |
Ho JH, Hong CY. Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection[J]. J Biomed Sci, 2011, 18(1): 30. doi:10.1186/1423-0127-18-30
|
| [9] |
Katary MA, Abdelsayed R, Alhashim A, et al. Salvianolic acid B slows the progression of breast cancer cell growth via enhancement of apoptosis and reduction of oxidative stress, inflammation, and angiogenesis[J]. Int J Mol Sci, 2019, 20(22): 5653. doi:10.3390/ijms20225653
|
| [10] |
Pan CS, Lou LX, Huo YQ, et al. Salvianolic acid B and tanshinone IIA attenuate myocardial ischemia injury in mice by NO production through multiple pathways[J]. Ther Adv Cardiovasc Dis, 2011, 5(2): 99-111. doi:10.1177/1753944710396538
|
| [11] |
Hu Y, Wang XY, Li QJ, et al. Salvianolic acid B alleviates myocardial ischemic injury by promoting mitophagy and inhibiting activation of the NLRP3 inflammasome[J]. Mol Med Rep, 2020, 22(6): 5199-208. doi:10.3892/mmr.2020.11589
|
| [12] |
Yang YH, Sun ZY, Sun XN, et al. Protective effect of salvianolic acid B against myocardial ischemia/reperfusion injury: preclinical systematic evaluation and meta-analysis[J]. Front Pharmacol, 2024, 15: 1452545. doi:10.3389/fphar.2024.1452545
|
| [13] |
Mao QP, Shao CY, Zhou HF, et al. Exploring the mechanism of salvianolic acid B against myocardial ischemia-reperfusion injury based on network pharmacology[J]. Pharmaceuticals (Basel), 2024, 17(3): 309. doi:10.3390/ph17030309
|
| [14] |
Zhang Q, Liu J, Duan H, et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. J Adv Res, 2021, 34: 43-63. doi:10.1016/j.jare.2021.06.023
|
| [15] |
Joe Y, Zheng M, Kim HJ, et al. Salvianolic acid B exerts vasoprotective effects through the modulation of heme oxygenase-1 and arginase activities[J]. J Pharmacol Exp Ther, 2012, 341(3): 850-8. doi:10.1124/jpet.111.190736
|
| [16] |
Chen RS, Zheng AR, Wang YJ, et al. Salvianolic acid B improves mitochondrial dysfunction of septic cardiomyopathy via enhancing ATF5-mediated mitochondrial unfolded protein response[J]. Toxicol Appl Pharmacol, 2024, 491: 117072. doi:10.1016/j.taap.2024.117072
|
| [17] |
Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins[J]. Mol Biol Cell, 2005, 16(10): 4623-35. doi:10.1091/mbc.e05-01-0033
|
| [18] |
Tanno M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1[J]. J Biol Chem, 2007, 282(9): 6823-32. doi:10.1074/jbc.m609554200
|
| [19] |
Vaquero A, Scher MB, Lee DH, et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis[J]. Genes Dev, 2006, 20(10): 1256-61. doi:10.1101/gad.1412706
|
| [20] |
Schwer B, North BJ, Frye RA, et al. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase[J]. J Cell Biol, 2002, 158(4): 647-57. doi:10.1083/jcb.200205057
|
| [21] |
Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells[J]. Cell, 2006, 126(5): 941-54. doi:10.1016/j.cell.2006.06.057
|
| [22] |
Nakagawa T, Lomb DJ, Haigis MC, et al. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle[J]. Cell, 2009, 137(3): 560-70. doi:10.1016/j.cell.2009.02.026
|
| [23] |
Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J]. Cell, 2006, 124(2): 315-29. doi:10.1016/j.cell.2005.11.044
|
| [24] |
Kiran S, Chatterjee N, Singh S, et al. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal[J]. FEBS J, 2013, 280(14): 3451-66. doi:10.1111/febs.12346
|
| [25] |
Peng F, Liao MR, Jin WK, et al. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis[J]. Signal Transduct Target Ther, 2024, 9(1): 133. doi:10.1038/s41392-024-01816-1
|
| [26] |
Mao JX, Wang D, Wang D, et al. SIRT5-related desuccinylation modification of AIFM1 protects against compression-induced intervertebral disc degeneration by regulating mitochondrial homeostasis[J]. Exp Mol Med, 2023, 55(1): 253-68. doi:10.1038/s12276-023-00928-y
|
| [27] |
Teng P, Cui KS, Yao SR, et al. SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration[J]. Cell Death Differ, 2024, 31(1): 65-77. doi:10.1038/s41418-023-01240-y
|
| [28] |
Wei XH, Chen J, Wu XF, et al. Salvianolic acid B alleviated myocardial ischemia-reperfusion injury via modulating SIRT3-mediated crosstalk between mitochondrial ROS and NLRP3[J]. Phytomedicine, 2025, 136: 156260. doi:10.1016/j.phymed.2024.156260
|
| [29] |
Niu WH, Wu F, Cao WY, et al. Salvianolic acid B alleviates limb ischemia in mice via promoting SIRT1/PI3K/AKT pathway-mediated M2 macrophage polarization[J]. Evid Based Complement Alternat Med, 2022, 2022: 1112394. doi:10.1155/2022/1112394
|
| [30] |
Tang BL. Sirt1 and the mitochondria[J]. Mol Cells, 2016, 39(2): 87-95. doi:10.14348/molcells.2016.2318
|
| [31] |
Xu HB, Song XN, Zhang XR, et al. SIRT1 regulates mitochondrial fission to alleviate high altitude hypoxia inducedcardiac dysfunction in rats via the PGC-1α-DRP1/FIS1/MFF pathway[J]. Apoptosis, 2024, 29(9/10): 1663-78. doi:10.1007/s10495-024-01954-5
|
| [32] |
Zheng MS, Bai YL, Sun XY, et al. Resveratrol reestablishes mitochondrial quality control in myocardial ischemia/reperfusion injury through Sirt1/Sirt3-Mfn2-parkin-PGC-1α pathway[J]. Molecules, 2022, 27(17): 5545. doi:10.3390/molecules27175545
|
| [33] |
Tang W, Guo RN, Hu CY, et al. BMAL1 alleviates myocardial damage in sepsis by activating SIRT1 signaling and promoting mitochondrial autophagy[J]. Int Immunopharmacol, 2024, 133: 112111. doi:10.1016/j.intimp.2024.112111
|
| [34] |
Du ZH, Zhou YT, Li QH, et al. SIRT1 ameliorates lamin A/C deficiency-induced cardiac dysfunction by promoting mitochondrial bioenergetics[J]. JACC Basic Transl Sci, 2024, 9(10): 1211-30. doi:10.1016/j.jacbts.2024.05.011
|
| [35] |
Ding XQ, Zhu CY, Wang WH, et al. SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion[J]. Pharmacol Res, 2024, 199: 106957. doi:10.1016/j.phrs.2023.106957
|