南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (1): 52-58.doi: 10.12122/j.issn.1673-4254.2025.01.07
陈丽红1,3(), 谢惠琳1, 黄霞1, 罗彤枫1, 郭婧1, 林春萌1, 刘雪艳1, 史李铄2, 靳三庆1,3(
)
收稿日期:
2024-09-26
出版日期:
2025-01-20
发布日期:
2025-01-20
通讯作者:
靳三庆
E-mail:chenlihn@mail.sysu.edu.cn;jinsq@mail.sysu.edu.cn
作者简介:
陈丽红,博士,主治医师,E-mail: chenlihn@mail.sysu.edu.cn
基金资助:
Lihong CHEN1,3(), Huilin XIE1, Xia HUANG1, Tongfeng LUO1, Jing GUO1, Chunmeng LIN1, Xueyan LIU1, Lishuo SHI2, Sanqing JIN1,3(
)
Received:
2024-09-26
Online:
2025-01-20
Published:
2025-01-20
Contact:
Sanqing JIN
E-mail:chenlihn@mail.sysu.edu.cn;jinsq@mail.sysu.edu.cn
摘要:
目的 探讨全麻诱导期丙泊酚滴定给药过程中,观察者警觉/镇静评定(OAAS)评分与脑电双频谱指数(BIS)之间的关系,分析BIS监测延迟对麻醉深度评估的影响。 方法 纳入90例美国麻醉医师协会(ASA)分级Ⅰ~Ⅱ级的患者,全麻诱导期予丙泊酚0.5 mg·kg-1·min-1泵注速度分别滴定至OAAS评分4分、3分、2分、1分,达到1分后给予瑞芬太尼2 μg/kg、罗库溴铵0.6 mg/kg,2 min后进行气管插管,记录每个评分时的BIS值、平均动脉压(MAP)、心率(HR)及丙泊酚给药量,并分析OAAS评分与BIS值的相关性。采用ROC曲线分析BIS值在判断OAAS评分达到1分时的诊断效能。 结果 所有患者均顺利完成气管插管,不同OAAS评分对应的BIS值之间的存在差异(P<0.01),OAAS评分从5分至4分时,BIS值平均下降4.08;从4分至3分时下降8.32;从3分至2分时下降5.43;从2分至1分时下降5.24。OAAS评分与BIS值之间有显著相关(ρ=0.775,P<0.001)。OAAS评分1分对应的BIS值中位数为76,83.33%的患者BIS值超过60。ROC曲线分析显示,OAAS评分达到1分的最佳BIS截断值为84,敏感度为88.9%,特异度为73.3%,曲线下面积(AUC)为0.842(0.803~0.881)。 结论 全麻诱导期OAAS评分与BIS值具有较强的相关性,且OAAS评分具有较高的灵敏度和实时性,可有效弥补BIS监测延迟的不足。
陈丽红, 谢惠琳, 黄霞, 罗彤枫, 郭婧, 林春萌, 刘雪艳, 史李铄, 靳三庆. 观察者警觉/镇静评定评分与脑电双频谱指数监测在全麻诱导期丙泊酚滴定给药中的相关性[J]. 南方医科大学学报, 2025, 45(1): 52-58.
Lihong CHEN, Huilin XIE, Xia HUANG, Tongfeng LUO, Jing GUO, Chunmeng LIN, Xueyan LIU, Lishuo SHI, Sanqing JIN. Correlation between the Observer's Assessment of Alertness/Sedation score and bispectral index in patients receiving propofol titration during general anesthesia induction[J]. Journal of Southern Medical University, 2025, 45(1): 52-58.
Characteristics | Result |
---|---|
Age (year) | 43.52±11.25 |
Gender | |
Male | 47 (52.2%) |
Female | 43(47.8%) |
Body weight (kg) | 62.48±10.47 |
Height (m) | 1.65±0.08 |
BMI (kg·m-2) | 22.80±2.75 |
Hb (g·L-1) | 130.33±17.85 |
Alb (g·L-1) | 41.18±3.17 |
Dose of remifentanil (μg) | 132.36±22.16 |
Dose of rocuronium (mg) | 37.49±6.28 |
ASA Grade | |
1 | 5 (5.56%) |
2 | 85 (94.44%) |
NYHA grading | |
Ⅰ | 30 (33.33%) |
Ⅱ | 60 (66.67%) |
表1 患者一般资料
Tab.1 General characteristics of the patients (n=90)
Characteristics | Result |
---|---|
Age (year) | 43.52±11.25 |
Gender | |
Male | 47 (52.2%) |
Female | 43(47.8%) |
Body weight (kg) | 62.48±10.47 |
Height (m) | 1.65±0.08 |
BMI (kg·m-2) | 22.80±2.75 |
Hb (g·L-1) | 130.33±17.85 |
Alb (g·L-1) | 41.18±3.17 |
Dose of remifentanil (μg) | 132.36±22.16 |
Dose of rocuronium (mg) | 37.49±6.28 |
ASA Grade | |
1 | 5 (5.56%) |
2 | 85 (94.44%) |
NYHA grading | |
Ⅰ | 30 (33.33%) |
Ⅱ | 60 (66.67%) |
OAAS score | BIS value | Titration time (s) | Dose of propofol (mg/kg) | MAP (mmHg) | HR (bpm) |
---|---|---|---|---|---|
5 | 96[94, 97] | - | - | 99.14±11.23 | 80.37±13.32 |
4 | 93[87, 97] | 120±34 | 1.00±0.27 | 91.66±10.92 | 79.74±11.34 |
3 | 82[80, 88] | 163±39 | 1.35±0.32 | 87.01±10.87 | 78.77±10.44 |
2 | 79[74, 82] | 188±45 | 1.56±0.37 | 83.60±10.85 | 78.64±10.52 |
1 | 76[66, 81] | 206±49 | 1.70±0.41 | 82.39±11.25 | 77.78±10.63 |
表2 OAAS评分达到不同评分时的患者情况
Tab.2 Parameters of the patients when OAAS score reaches different ratings (n=90)
OAAS score | BIS value | Titration time (s) | Dose of propofol (mg/kg) | MAP (mmHg) | HR (bpm) |
---|---|---|---|---|---|
5 | 96[94, 97] | - | - | 99.14±11.23 | 80.37±13.32 |
4 | 93[87, 97] | 120±34 | 1.00±0.27 | 91.66±10.92 | 79.74±11.34 |
3 | 82[80, 88] | 163±39 | 1.35±0.32 | 87.01±10.87 | 78.77±10.44 |
2 | 79[74, 82] | 188±45 | 1.56±0.37 | 83.60±10.85 | 78.64±10.52 |
1 | 76[66, 81] | 206±49 | 1.70±0.41 | 82.39±11.25 | 77.78±10.63 |
1 | Sahinovic MM, Struys MMRF, Absalom AR. Clinical pharmacokinetics and pharmacodynamics of propofol[J]. Clin Pharmacokinet, 2018, 57(12): 1539-58. |
2 | Saugel B, Bebert EJ, Briesenick L, et al. Mechanisms contributing to hypotension after anesthetic induction with sufentanil, propofol, and rocuronium: a prospective observational study[J]. J Clin Monit Comput, 2022, 36(2): 341-7. |
3 | Fassl J, High KM, Stephenson ER, et al. The intravenous anesthetic propofol inhibits human L-type calcium channels by enhancing voltage-dependent inactivation[J]. J Clin Pharmacol, 2011, 51(5): 719-30. |
4 | Chen LH, Lu K, Luo TF, et al. Observer's Assessment of Alertness/Sedation-based titration reduces propofol consumption and incidence of hypotension during general anesthesia induction: a randomized controlled trial[J]. Sci Prog, 2021, 104(4): 368504211052354. |
5 | Barakat AR, Sutcliffe N, Schwab M. Effect site concentration during propofol TCI sedation: a comparison of sedation score with two pharmacokinetic models[J]. Anaesthesia, 2007, 62(7): 661-6. |
6 | Chernik DA, Gillings D, Laine H, et al. Validity and reliability of the Observer's Assessment of Alertness/Sedation Scale: study with intravenous midazolam[J]. J Clin Psychopharmacol, 1990, 10(4): 244-51. |
7 | Friedberg BL. Can friedberg's triad solve persistent anesthesia problems? over-medication, pain management, postoperative nausea and vomiting[J]. Plast Reconstr Surg Glob Open, 2017, 5(10): e1527. |
8 | Shajahan MS, Agrawal S, Singla D. Comparison between patient state index, bispectral index, and clinical parameters for propofol induction in Indian patients: a prospective study[J]. J Anaesthesiol Clin Pharmacol, 2023, 39(4): 544-9. |
9 | Rüsch D, Arndt C, Eberhart L, et al. Bispectral index to guide induction of anesthesia: a randomized controlled study[J]. BMC Anesthesiol, 2018, 18(1): 66. |
10 | Gürses E, Sungurtekin H, Tomatir E, et al. Assessing propofol induction of anesthesia dose using bispectral index analysis[J]. Anesth Analg, 2004, 98(1): 128-31. |
11 | Xu GP, Qiao NN, Pan YY, et al. The appropriate dose of propofol for anesthesia induction in morbidly obese patients[J]. Ann Palliat Med, 2020, 9(4): 1921-7. |
12 | Zeng YJ, Cao S, Chen MH, et al. GABRA1 and GABRB2 polymorphisms are associated with propofol susceptibility[J]. Pharmgenomics Pers Med, 2022, 15: 105-17. |
13 | Xiang Y, Li YH. Comparison of 1.5% lidocaine and 0.5% ropivacaine epidural anesthesia combined with propofol general anesthesia guided by bispectral index[J]. J Zhejiang Univ Sci B, 2007, 8(6): 428-34. |
14 | Liu N, Chazot T, Genty A, et al. Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control: a prospective, randomized, multicenter study[J]. Anesthesiology, 2006, 104(4): 686-95. |
15 | Naevra MCJ, Romundstad L, Aasheim A, et al. Monitoring the awake and anesthetized unconscious states using bispectral index and electroencephalographic connectivity measures[J]. Clin EEG Neurosci, 2023, 54(3): 273-80. |
16 | Avidan MS, Zhang LN, Burnside BA, et al. Anesthesia awareness and the bispectral index[J]. N Engl J Med, 2008, 358(11): 1097-108. |
17 | Shander A, Lobel GP, Mathews DM. Brain monitoring and the depth of anesthesia: another goldilocks dilemma[J]. Anesth Analg, 2018, 126(2): 705-9. |
18 | Pilge S, Zanner R, Schneider G, et al. Time delay of index calculation: analysis of cerebral state, bispectral, and narcotrend indices[J]. Anesthesiology, 2006, 104(3): 488-94. |
19 | de Wit F, van Vliet AL, de Wilde RB, et al. The effect of propofol on haemodynamics: cardiac output, venous return, mean systemic filling pressure, and vascular resistances[J]. Br J Anaesth, 2016, 116(6): 784-9. |
20 | Goodchild CS, Serrao JM. Propofol-induced cardiovascular depression: science and art[J]. Br J Anaesth, 2015, 115(4): 641-2. |
21 | Ahuja S, Mascha EJ, Yang DS, et al. Associations of intraoperative radial arterial systolic, diastolic, mean, and pulse pressures with myocardial and acute kidney injury after noncardiac surgery: a retrospective cohort analysis[J]. Anesthesiology, 2020, 132(2): 291-306. |
22 | Jor O, Maca J, Koutna J, et al. Hypotension after induction of general anesthesia: occurrence, risk factors, and therapy. A prospective multicentre observational study[J]. J Anesth, 2018, 32(5): 673-80. |
23 | Gregory A, Stapelfeldt WH, Khanna AK, et al. Intraoperative hypotension is associated with adverse clinical outcomes after noncardiac surgery[J]. Anesth Analg, 2021, 132(6): 1654-65. |
24 | Aktas Yildirim S, Sarikaya ZT, Dogan L, et al. Arterial elastance: a predictor of hypotension due to anesthesia induction[J]. J Clin Med, 2023, 12(9): 3155. |
25 | Mathis MR, Naik BI, Freundlich RE, et al. Preoperative risk and the association between hypotension and postoperative acute kidney injury[J]. Anesthesiology, 2020, 132(3): 461-75. |
26 | Sun LY, Chung AM, Farkouh ME, et al. Defining an intraoperative hypotension threshold in association with stroke in cardiac surgery[J]. Anesthesiology, 2018, 129(3): 440-7. |
27 | Hu YQ, Lim A. MAP 65-is it enough[J]?. Curr Opin Anaesthesiol, 2022, 35(2): 242-7. |
28 | Onuigbo MA. Perioperative acute kidney injury: prevention rather than cure[J]. JAMA Surg, 2016, 151(8): 782-3. |
29 | Gottschalk A, Van Aken H, Zenz M, et al. Is anesthesia dangerous?[J]. Dtsch Arztebl Int, 2011, 108(27): 469-74. |
30 | Madanu R, Rahman F, Abbod MF, et al. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition[J]. Math Biosci Eng, 2021, 18(5): 5047-68. |
31 | Sessler DI, Sigl JC, Kelley SD, et al. Hospital stay and mortality are increased in patients having a "triple low" of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia[J]. Anesthesiology, 2012, 116(6): 1195-203. |
32 | Schick A, Driver B, Moore JC, et al. Randomized clinical trial comparing procedural Amnesia and respiratory depression between moderate and deep sedation with propofol in the emergency department[J]. Acad Emerg Med, 2019, 26(4): 364-74. |
33 | Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery[J]. Cochrane Database Syst Rev, 2014(6): CD003843. |
34 | Pérez-Otal B, Aragón-Benedí C, Pascual-Bellosta A, et al. Neuromonitoring depth of anesthesia and its association with postoperative delirium[J]. Sci Rep, 2022, 12(1): 12703. |
35 | Singh H. Bispectral index (BIS) monitoring during propofol-induced sedation and anaesthesia[J]. Eur J Anaesthesiol, 1999, 16(1): 31-6. |
36 | Myles PS, Leslie K, McNeil J, et al. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial[J]. Lancet, 2004, 363(9423): 1757-63. |
37 | Avidan MS, Jacobsohn E, Glick D, et al. Prevention of intraoperative awareness in a high-risk surgical population[J]. N Engl J Med, 2011, 365(7): 591-600. |
38 | Petrun AM, Kamenik M. Bispectral index-guided induction of general anaesthesia in patients undergoing major abdominal surgery using propofol or etomidate: a double-blind, randomized, clinical trial[J]. Br J Anaesth, 2013, 110(3): 388-96. |
39 | 冯 艺, 许军军, 编写组中华医学会麻醉学分会中国全凭静脉麻醉临床实践指南版. 中国全凭静脉麻醉临床实践指南(2024版)[J]. 中华麻醉学杂志, 2024, 44(9): 1030-49. |
40 | Van Hese L, Theys T, Absalom AR, et al. Comparison of predicted and real propofol and remifentanil concentrations in plasma and brain tissue during target-controlled infusion: a prospective observational study[J]. Anaesthesia, 2020, 75(12): 1626-34. |
41 | Kateliya R, Madhukant, Dubey M, et al. Comparison of recovery profiles in target-controlled infusions (TCI) versus manually controlled infusions for total intravenous anesthesia (TIVA) in laparoscopic surgeries. A randomized controlled trial[J]. J Anaesthesiol Clin Pharmacol, 2023, 39(2): 258-63. |
42 | Patel B, Patel H, Shah D, et al. Control strategy with multivariable fault tolerance module for automatic intravenous anesthesia[J]. Biomed Eng Lett, 2020, 10(4): 555-78. |
43 | Patel B, Patel H, Vachhrajani P, et al. Adaptive Smith predictor controller for total intravenous anesthesia automation[J]. Biomed Eng Lett, 2019, 9(1): 127-44. |
44 | Ferreira AL, Mendes JG, Nunes CS, et al. Evaluation of Bispectral Index time delay in response to anesthesia induction: an observational study[J]. Braz J Anesthesiol, 2019, 69(4): 377-82. |
45 | Lim TW, Choi YH, Kim JY, et al. Efficacy of the bispectral index and Observer's Assessment of Alertness/Sedation Scale in monitoring sedation during spinal anesthesia: a randomized clinical trial[J]. J Int Med Res, 2020, 48(4): 300060519893165. |
[1] | 曹福羊, 郭永馨, 郭舒婷, 周志康, 曹江北, 仝 黎, 米卫东. 激活小鼠ZI 区GABA 能神经元可促进七氟醚和丙泊酚的麻醉诱导而对麻醉维持及觉醒无影响[J]. 南方医科大学学报, 2023, 43(5): 718-726. |
[2] | 纪雪霞, 朱 毅, 张登文, 蔡宇晶, 周国斌. 丙泊酚诱导新生大鼠少突胶质细胞的凋亡:基于激活caspase家族蛋白和抑制抗凋亡程序[J]. 南方医科大学学报, 2023, 43(10): 1771-1775. |
[3] | 张昕,林春水,郭培培,覃军,覃秀秀,梁伟东. 丙泊酚对SD乳鼠少突胶质细胞髓鞘碱性蛋白表达和髓鞘形成的影响[J]. 南方医科大学学报, 2019, 39(08): 950-. |
[4] | 张敬,于晴,刘阳,刘辉,孙茫,田芹,涂生芬. 丙泊酚合并低氧通过p38通路损伤未成熟大鼠的认知功能[J]. 南方医科大学学报, 2018, 38(11): 1294-. |
[5] | 刘川,林春水,郭培培,张昕,朱晓勤. 胚胎期斑马鱼丙泊酚暴露可下调髓鞘碱性蛋白的表达[J]. 南方医科大学学报, 2018, 38(09): 1115-. |
[6] | 李扬,李伟光,冯泽国,张成岗,黄连军,杨晓瑞,于颖群. 丙泊酚及手术创伤对发育期大鼠神经发育和认知功能的影响[J]. 南方医科大学学报, 2018, 38(02): 187-. |
[7] | 朱晓勤,林春水,郭培培,李平,刘川. 丙泊酚对不同发育时期SD大鼠少突胶质细胞鞘磷脂蛋白的影响[J]. 南方医科大学学报, 2017, 37(12): 1615-. |
[8] | 孙茫,沈炼桔,刘阳,于晴,龙春兰,李上莹莹,涂生芬. 低氧环境下丙泊酚可增加PC12细胞的凋亡[J]. 南方医科大学学报, 2017, 37(02): 216-. |
[9] | 叶慧瑾,白建杰,郭培培,汪威,林春水. 丙泊酚下调水通道蛋白3和基质金属蛋白酶-9表达抑制人肺癌A549细胞的侵袭力[J]. 南方医科大学学报, 2016, 36(09): 1286-. |
[10] | 白建杰,林春水,叶慧瑾,郭培培,汪威. 丙泊酚下调H19抑制乳腺癌MDA-MB-231细胞的迁移和侵袭[J]. 南方医科大学学报, 2016, 36(09): 1255-. |
[11] | 陈启忠,李志勤,姚向国. 剖宫产全麻中丙泊酚中长链脂肪乳注射液的有效性及安全性[J]. 南方医科大学学报, 2015, 35(12): 1806-. |
[12] | 郭梦倬,李伟光,刘旭,冯泽国,张成岗,吴芳勇,黄连军,于颖群. 连续多次应用丙泊酚复合维生素C对小鼠麻醉效应的影响[J]. 南方医科大学学报, 2015, 35(12): 1701-. |
[13] | 樊宗兵,童旭辉,李言,于丽,陈银玲,刘浩昂,董淑英. 丙泊酚保护脑缺血再灌注损伤可能与缝隙连接功能的抑制相关[J]. 南方医科大学学报, 2015, 35(12): 1678-. |
[14] | 梁芳果,欧阳铭文,王海棠. BIS反馈闭环路靶控输注右美托咪定可减少丙泊酚用量[J]. 南方医科大学学报, 2015, 35(10): 1497-. |
[15] | 汪 威,林春水,张雅静,陈 莺,郭培培. 丙泊酚对肿瘤细胞肺转移及E钙粘蛋白、β-连环蛋白表达的影响[J]. 南方医科大学学报, 2015, 35(06): 852-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||