Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (11): 2394-2404.doi: 10.12122/j.issn.1673-4254.2025.11.12
Zihao CHEN1(
), Yanbu GUO1,2, Shengli SONG1(
), Quanming GUO1, Dongming ZHOU3,4(
)
Received:2025-05-21
Online:2025-11-20
Published:2025-11-28
Contact:
Shengli SONG, Dongming ZHOU
E-mail:chenzh000523@163.com;2003010@zzuli.edu.cn;zhoudm@ynu.edu.cn
Supported by:Zihao CHEN, Yanbu GUO, Shengli SONG, Quanming GUO, Dongming ZHOU. A heterogeneous graph method integrating multi-layer semantics and topological information for improving drug-target interaction prediction[J]. Journal of Southern Medical University, 2025, 45(11): 2394-2404.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.11.12
| Node type | Num | Edge type | Num |
|---|---|---|---|
| Drug | 708 | Drug-drug (interaction) | 10 036 |
| Protein | 1512 | Drug-drug (interaction) | 501 264 |
| Disease | 5603 | Drug-protein | 1923 |
| Side effect | 4192 | Drug-disease | 199 214 |
| Drug-side effect | 80 164 | ||
| Protein-disease | 1 596 745 | ||
| Protein-protein (interaction) | 7363 | ||
| Protein-protein (similarity) | 2 286 144 |
Tab.1 Information of the nodes and edges in the Luo dataset
| Node type | Num | Edge type | Num |
|---|---|---|---|
| Drug | 708 | Drug-drug (interaction) | 10 036 |
| Protein | 1512 | Drug-drug (interaction) | 501 264 |
| Disease | 5603 | Drug-protein | 1923 |
| Side effect | 4192 | Drug-disease | 199 214 |
| Drug-side effect | 80 164 | ||
| Protein-disease | 1 596 745 | ||
| Protein-protein (interaction) | 7363 | ||
| Protein-protein (similarity) | 2 286 144 |
| Node type | Num | Edge type | Num |
|---|---|---|---|
| Drug | 1094 | Drug-drug | 1 196 836 |
| Protein | 1556 | Drug-drug | 11 819 |
| Chemical structure | 881 | Drug-chemical substructure | 133 880 |
| Side effect | 4063 | Drug-side effect | 122 792 |
| Substituent | 738 | Drug-side effect | 20 798 |
| GO term | 4098 | Protein-GO term | 35 980 |
| Protein-protein | 2 421 136 |
Tab.2 Information of the nodes and edges in the Zheng dataset
| Node type | Num | Edge type | Num |
|---|---|---|---|
| Drug | 1094 | Drug-drug | 1 196 836 |
| Protein | 1556 | Drug-drug | 11 819 |
| Chemical structure | 881 | Drug-chemical substructure | 133 880 |
| Side effect | 4063 | Drug-side effect | 122 792 |
| Substituent | 738 | Drug-side effect | 20 798 |
| GO term | 4098 | Protein-GO term | 35 980 |
| Protein-protein | 2 421 136 |
| Methods | Luo dataset | ||
|---|---|---|---|
| AUC | AUPRC | ||
| DTINet | 0.879±0.004 | 0.906±0.003 | |
| NeoDTI | 0.955±0.003 | 0.889±0.004 | |
| GCN-DTI | 0.918±0.005 | 0.897±0.005 | |
| IMCHGAN | 0.956±0.004 | 0.959±0.003 | |
| HampDTI | 0.928±0.003 | 0.927±0.005 | |
| SGCL-DTI | 0.977±0.002 | 0.976±0.002 | |
| GSRF-DTI | 0.977±0.002 | 0.980±0.003 | |
| EEG-DTI | 0.954±0.003 | 0.964±0.004 | |
| MIDTI | 0.978±0.003 | 0.970±0.002 | |
| CE-DTI | 0.976±0.002 | 0.976±0.002 | |
| SHGCL-DTI | 0.957±0.004 | 0.958±0.003 | |
| AMGDTI | 0.977±0.002 | 0.977±0.002 | |
| GMADTI | 0.987±0.002 | 0.987±0.002 | |
Tab.3 Comparison results with baseline methods on the Luo dataset
| Methods | Luo dataset | ||
|---|---|---|---|
| AUC | AUPRC | ||
| DTINet | 0.879±0.004 | 0.906±0.003 | |
| NeoDTI | 0.955±0.003 | 0.889±0.004 | |
| GCN-DTI | 0.918±0.005 | 0.897±0.005 | |
| IMCHGAN | 0.956±0.004 | 0.959±0.003 | |
| HampDTI | 0.928±0.003 | 0.927±0.005 | |
| SGCL-DTI | 0.977±0.002 | 0.976±0.002 | |
| GSRF-DTI | 0.977±0.002 | 0.980±0.003 | |
| EEG-DTI | 0.954±0.003 | 0.964±0.004 | |
| MIDTI | 0.978±0.003 | 0.970±0.002 | |
| CE-DTI | 0.976±0.002 | 0.976±0.002 | |
| SHGCL-DTI | 0.957±0.004 | 0.958±0.003 | |
| AMGDTI | 0.977±0.002 | 0.977±0.002 | |
| GMADTI | 0.987±0.002 | 0.987±0.002 | |
| Methods | Zheng dataset | |
|---|---|---|
| AUC | AUPRC | |
| DTINet | 0.889±0.004 | 0.900±0.004 |
| NeoDTI | 0.946±0.003 | 0.846±0.005 |
| GCN-DTI | 0.922±0.004 | 0.914±0.004 |
| IMCHGAN | 0.946±0.002 | 0.929±0.003 |
| EEG-DTI | 0.942±0.003 | 0.941±0.003 |
| SGCL-DTI | 0.968±0.002 | 0.968±0.002 |
| SHGCL-DTI | 0.957±0.003 | 0.961±0.003 |
| CE-DTI | 0.972±0.003 | 0.972±0.002 |
| MIDTI | 0.954±0.002 | 0.949±0.004 |
| AMGDTI | 0.973±0.004 | 0.971±0.002 |
| GMADTI | 0.987±0.002 | 0.983±0.001 |
Tab.4 Comparison results with baseline methods on the Zheng dataset
| Methods | Zheng dataset | |
|---|---|---|
| AUC | AUPRC | |
| DTINet | 0.889±0.004 | 0.900±0.004 |
| NeoDTI | 0.946±0.003 | 0.846±0.005 |
| GCN-DTI | 0.922±0.004 | 0.914±0.004 |
| IMCHGAN | 0.946±0.002 | 0.929±0.003 |
| EEG-DTI | 0.942±0.003 | 0.941±0.003 |
| SGCL-DTI | 0.968±0.002 | 0.968±0.002 |
| SHGCL-DTI | 0.957±0.003 | 0.961±0.003 |
| CE-DTI | 0.972±0.003 | 0.972±0.002 |
| MIDTI | 0.954±0.002 | 0.949±0.004 |
| AMGDTI | 0.973±0.004 | 0.971±0.002 |
| GMADTI | 0.987±0.002 | 0.983±0.001 |
| [1] | Abbasi Mesrabadi H, Faez K, Pirgazi J. Drug-target interaction prediction based on protein features, using wrapper feature selection[J]. Sci Rep, 2023, 13(1): 3594. doi:10.1038/s41598-023-30026-y |
| [2] | Dehghan A, Abbasi K, Razzaghi P, et al. CCL-DTI: contributing the contrastive loss in drug-target interaction prediction[J]. BMC Bioinformatics, 2024, 25(1): 48. doi:10.1186/s12859-024-05671-3 |
| [3] | 刘正美, 魏雪梅, 张俊鹏, 等. 药物分子与靶标蛋白结合亲和力预测研究进展[J].计算机工程与应用, 2024, 60(23): 79-90. |
| [4] | Khatun MS, Hasan MM, Kurata H. PreAIP: computational prediction of anti-inflammatory peptides by integrating multiple complementary features[J]. Front Genet, 2019, 10: 129. doi:10.3389/fgene.2019.00129 |
| [5] | Ru XQ, Wang LD, Li LH, et al. Exploration of the correlation between GPCRs and drugs based on a learning to rank algorithm[J]. Comput Biol Med, 2020, 119: 103660. doi:10.1016/j.compbiomed.2020.103660 |
| [6] | Ding YJ, Tang JJ, Guo F. Identification of drug-target interactions via multi-view graph regularized link propagation model[J]. Neurocomputing, 2021, 461: 618-31. doi:10.1016/j.neucom.2021.05.100 |
| [7] | Song W, Xu L, Han C, et al. Drug-target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism[J]. Bioinformatics, 2024, 40(6): btae346. doi:10.1093/bioinformatics/btae346 |
| [8] | Luo Y, Zhao X, Zhou J, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information[J]. Nat Commun, 2017, 8(1): 573. doi:10.1038/s41467-017-00680-8 |
| [9] | Zhou D, Xu Z, Li W, et al. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network[J]. Bioinformatics, 2021, 37(23): 4485-92. doi:10.1093/bioinformatics/btab473 |
| [10] | Qiao G, Wang G, Li Y. Causal enhanced drug-target interaction prediction based on graph generation and multi-source information fusion[J]. Bioinformatics, 2024, 40(10): btae570. doi:10.1093/bioinformatics/btae570 |
| [11] | 秦海盈, 赵中英, 李建晖, 等.基于元路径与层次注意力的时序异质信息网络表示学习方法[J].模式识别与人工智能,2021, 34(12): 1093-102. |
| [12] | Li J, Wang J, Lv H, et al. IMCHGAN: inductive matrix completion with heterogeneous graph attention networks for drug-target interactions prediction[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(2): 655-65. doi:10.1109/tcbb.2021.3088614 |
| [13] | Su Y, Hu Z, Wang F, et al. AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network[J]. Brief Bioinform, 2023, 25(1): bbad474. doi:10.1093/bib/bbad474 |
| [14] | 潘柏儒, 丁卫平, 鞠恒荣, 等.基于粗糙图的图卷积神经网络算法[J].模式识别与人工智能, 2023, 35(9): 827-38. |
| [15] | Wan F, Hong L, Xiao A, et al. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions[J]. Bioinformatics, 2019, 35(1): 104-11. doi:10.1093/bioinformatics/bty543 |
| [16] | Zhao T, Hu Y, Valsdottir LR, et al. Identifying drug-target interactions based on graph convolutional network and deep neural network[J]. Brief Bioinform, 2021, 22(2): 2141-50. doi:10.1093/bib/bbaa044 |
| [17] | Peng J, Wang Y, Guan J, et al. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction[J]. Brief Bioinform, 2021, 22(5): bbaa430. doi:10.1093/bib/bbaa430 |
| [18] | Zhu Y, Ning C, Zhang N, et al. GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph[J]. BMC Biol, 2024, 22(1): 156. doi:10.1186/s12915-024-01949-3 |
| [19] | Mukesh M Raghuwanshi Pradnya S Borkar Sachin U Balvir. Node2Vec and machine learning: a powerful Duo for link prediction in social network[J]. Jes, 2024, 20(2s): 639-49. doi:10.52783/jes.1530 |
| [20] | Johnson SJ, Murty MR, Navakanth I. A detailed review on word embedding techniques with emphasis on word2vec[J]. Multimed Tools Appl, 2024, 83(13): 37979-8007. doi:10.1007/s11042-023-17007-z |
| [21] | Ding Y, Yao Q, Zhao H, et al. Diffmg: Differentiable meta graph search for heterogeneous graph neural networks[C].Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 279-88. doi:10.1145/3447548.3467447 |
| [22] | Guo YB, Zhou DM, Ruan XL, et al. Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features[J]. Neural Netw, 2023, 165: 491-505. doi:10.1016/j.neunet.2023.05.052 |
| [23] | Rasamoelina AD, Adjailia F, Sincak P. A review of activation function for artificial neural network[C]//2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI). January 23-25, 2020. Herlany, Slovakia. IEEE, 2020: 281-6. doi:10.1109/sami48414.2020.9108717 |
| [24] | Dubey SR, Singh SK, Chaudhuri BB. Activation functions in deep learning: a comprehensive survey and benchmark[J]. Neuroco-mputing, 2022, 503: 92-108. doi:10.1016/j.neucom.2022.06.111 |
| [25] | Deora P, Ghaderi R, Taheri H, et al.On the optimization and generalization of multi-head attention[J]. arXiv preprint arXiv:2310. 12680, 2023. |
| [26] | 郑子瑜, 杨夏颖, 吴圣杰, 等.多特征融合的产时超声胎方位识别模型[J].南方医科大学学报, 2025, 45(7): 1563-70. |
| [27] | Tian Y, Wang X, Yao X, et al. Predicting molecular properties based on the interpretable graph neural network with multistep focus mechanism[J]. Brief Bioinform, 2023, 24(1): bbac534. doi:10.1093/bib/bbac534 |
| [28] | Wang F, Liu H. Understanding the behaviour of contrastive loss[C].Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021: 2495-504. doi:10.1109/cvpr46437.2021.00252 |
| [29] | Ranjan P, Khan P, Kumar S, et al. $łog$-sigmoid activation-based long short-term memory for time-series data classification[J]. IEEE Trans Artif Intell, 2024, 5(2): 672-83. doi:10.1109/tai.2023.3265641 |
| [30] | Zheng Y, Peng H, Zhang XC, et al. Predicting drug targets from heterogeneous spaces using anchor graph hashing and ensemble learning[C]//2018 International Joint Conference on Neural Networks (IJCNN). July 8-13, 2018. Rio de Janeiro. IEEE, 2018: 1-7. doi:10.1109/ijcnn.2018.8489028 |
| [31] | Srivastava A, Rawat BS, Singh G, et al. A review of optimization algorithms for training neural networks[C]//2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET). September 14-15, 2023. Ghaziabad, India. IEEE, 2023: 886-90. doi:10.1109/icseiet58677.2023.10303287 |
| [32] | Wang H, Huang F, Xiong Z, et al. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions[J]. Brief Bioinform, 2022, 23(4): bbac184. doi:10.1093/bib/bbac184 |
| [33] | Li Y, Qiao G, Gao X, et al. Supervised graph co-contrastive learning for drug-target interaction prediction[J]. Bioinformatics, 2022, 38(10): 2847-54. doi:10.1093/bioinformatics/btac164 |
| [34] | Yao KN, Wang XW, Li WN, et al. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction[J]. Comput Biol Med, 2023, 163: 107199. doi:10.1016/j.compbiomed.2023.107199 |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||