Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (9): 2046-2054.doi: 10.12122/j.issn.1673-4254.2025.09.24
Qingfeng DU1,2(), Chao YANG3, Xueqing XIA1, Ting WANG1,2(
)
Received:
2025-01-02
Online:
2025-09-20
Published:
2025-09-28
Contact:
Ting WANG
E-mail:dqf1689@smu.edu.cn;397174763@qq.com
Qingfeng DU, Chao YANG, Xueqing XIA, Ting WANG. Therapeutic potential of extracellular vesicles in neurological diseases[J]. Journal of Southern Medical University, 2025, 45(9): 2046-2054.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.09.24
Classification | Subgroup | Size (nm) | Biomarkers | Origin |
---|---|---|---|---|
Exomeres | -35 | Hsp90-β | Endosomes | |
Exosomes | Exo-S | 60-80 | Tetraspanins, Tsg101, Alix, flotillin, Hsp70 | |
Exo-L | 90-120 | Tetraspanins, Tsg101, Alix, Hsp70 | ||
Microvesicles | 150-1000 | Integrins, selectins, CD40 | Plasma membrane | |
Apoptotic bodies | 500-2000 | Phosphatidylserine, genomic DNA | Plasma membrane, endoplasmic reticulum | |
Migrasomes | 500-3000 | Tetraspanins, chemokines, cytokines, growth factors, cholesterol | Retraction fibers |
Tab.1 Classification of EVs
Classification | Subgroup | Size (nm) | Biomarkers | Origin |
---|---|---|---|---|
Exomeres | -35 | Hsp90-β | Endosomes | |
Exosomes | Exo-S | 60-80 | Tetraspanins, Tsg101, Alix, flotillin, Hsp70 | |
Exo-L | 90-120 | Tetraspanins, Tsg101, Alix, Hsp70 | ||
Microvesicles | 150-1000 | Integrins, selectins, CD40 | Plasma membrane | |
Apoptotic bodies | 500-2000 | Phosphatidylserine, genomic DNA | Plasma membrane, endoplasmic reticulum | |
Migrasomes | 500-3000 | Tetraspanins, chemokines, cytokines, growth factors, cholesterol | Retraction fibers |
Disease | Sources of EVs | Cargos | Mechanism and function | Referen-ces |
---|---|---|---|---|
Alzheimer's disease | Bone marrow MSCs | Reduced Aβ and amyloid deposition | ||
MSCs | MSC-derived exosomal miR-223 inhibited the apoptosis of neurons by targeting PTEN, activating the PI3K/Akt pathway | |||
Hippocampus neuron cell | Fe65-EXO-Cory-B blocked the natural interaction between Fe65 and APP, induceing autophagy in APP-expressing neuronal cells | |||
MSCs | Reduced plaque deposition and Aβ | |||
Macrophages | Silibinin | Reducing Aβ aggregation and deactivating astrocytes | ||
Cells | Curcumin | Inhibiting phosphorylation of the Tau protein through activating the AKT/GSK-3β pathway | ||
Rat plasma | Quercetin | Inhibiting cyclin-dependent kinase 5-mediated phosphorylation of Tau and reducing formation of insoluble neurofibrillary tangles | ||
Parkinson's disease | Dendritic cells | shRNA minicircles | Decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons | |
Epicatechin gallate | Inhibiting caspase 3, increase the Bcl-2/BAX ratioto reduce apoptosis | |||
MSCs | Stimulating ICAM1-SMAD3/ P38MAPK pathway | |||
Astrocytes | miR-200a-3p suppressed MKK4 expressions | |||
MSCs | Curcumin | PR-EXO/PP@Cur targets the reductionα-synuclein aggregates, promotes neuron function recovery, and alleviates the neuroinflammation | ||
MSCs | Dihydrotanshinone I | Inhibition of peripheral inflammatory cell infiltration, precise regulation of inflammatory microglia in the substantia nigra |
Tab.2 Therapeutic potential of EVs in neurodegenerative diseases
Disease | Sources of EVs | Cargos | Mechanism and function | Referen-ces |
---|---|---|---|---|
Alzheimer's disease | Bone marrow MSCs | Reduced Aβ and amyloid deposition | ||
MSCs | MSC-derived exosomal miR-223 inhibited the apoptosis of neurons by targeting PTEN, activating the PI3K/Akt pathway | |||
Hippocampus neuron cell | Fe65-EXO-Cory-B blocked the natural interaction between Fe65 and APP, induceing autophagy in APP-expressing neuronal cells | |||
MSCs | Reduced plaque deposition and Aβ | |||
Macrophages | Silibinin | Reducing Aβ aggregation and deactivating astrocytes | ||
Cells | Curcumin | Inhibiting phosphorylation of the Tau protein through activating the AKT/GSK-3β pathway | ||
Rat plasma | Quercetin | Inhibiting cyclin-dependent kinase 5-mediated phosphorylation of Tau and reducing formation of insoluble neurofibrillary tangles | ||
Parkinson's disease | Dendritic cells | shRNA minicircles | Decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons | |
Epicatechin gallate | Inhibiting caspase 3, increase the Bcl-2/BAX ratioto reduce apoptosis | |||
MSCs | Stimulating ICAM1-SMAD3/ P38MAPK pathway | |||
Astrocytes | miR-200a-3p suppressed MKK4 expressions | |||
MSCs | Curcumin | PR-EXO/PP@Cur targets the reductionα-synuclein aggregates, promotes neuron function recovery, and alleviates the neuroinflammation | ||
MSCs | Dihydrotanshinone I | Inhibition of peripheral inflammatory cell infiltration, precise regulation of inflammatory microglia in the substantia nigra |
[1] | Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases[J]. Signal Transduct Target Ther, 2024, 9(1): 27. doi:10.1038/s41392-024-01735-1 |
[2] | Wang W, Sun H, Duan H, et al. Isolation and usage of exosomes in central nervous system diseases[J]. CNS Neurosci Ther, 2024, 30(3): e14677. doi:10.1111/cns.14677 |
[3] | van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-28. doi:10.1038/nrm.2017.125 |
[4] | Wang T, Xing YL, Cheng ZY, et al. Analysis of single extracellular vesicles for biomedical applications with especial emphasis on cancer investigations[J]. Trac Trends Anal Chem, 2022, 152: 116604. doi:10.1016/j.trac.2022.116604 |
[5] | Shao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4): 1917-50. doi:10.1021/acs.chemrev.7b00534 |
[6] | Xu HT, Zhu YL, Hsiao AW, et al. Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery[J]. Biomaterials, 2023, 294: 121998. doi:10.1016/j.biomaterials.2023.121998 |
[7] | Melamed JR, Yerneni SS, Arral ML, et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer[J]. Sci Adv, 2023, 9(4): eade1444. doi:10.1126/sciadv.ade1444 |
[8] | Cecchin R, Troyer Z, Witwer K, et al. Extracellular vesicles: The next generation in gene therapy delivery[J]. Mol Ther, 2023, 31(5): 1225-30. doi:10.1016/j.ymthe.2023.01.021 |
[9] | Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750. |
[10] | Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514. doi:10.1146/annurev-biochem-013118-111902 |
[11] | Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17. doi:10.1038/s41556-018-0250-9 |
[12] | Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Biol, 2018, 20(3): 332-43. |
[13] | Cui JW, Wang X, Li JG, et al. Immune exosomes loading self-assembled nanomicelles traverse the blood-brain barrier for chemo-immunotherapy against glioblastoma[J]. ACS Nano, 2023, 17(2): 1464-84. doi:10.1021/acsnano.2c10219 |
[14] | Tenchov R, Sasso JM, Wang X, et al. Exosomes-Nature's lipid nanoparticles, a rising star in drug delivery and diagnostics[J]. ACS Nano, 2022, 16(11): 17802-46. doi:10.1021/acsnano.2c08774 |
[15] | van Niel G, Carter DRF, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2022, 23(5): 369-82. doi:10.1038/s41580-022-00460-3 |
[16] | Wang SE. Extracellular vesicles in cancer therapy[J]. Semin Cancer Biol, 2022, 86: 296-309. doi:10.1016/j.semcancer.2022.06.001 |
[17] | Russo MN, Whaley LA, Norton ES, et al. Extracellular vesicles in the glioblastoma microenvironment: a diagnostic and therapeutic perspective[J]. Mol Aspects Med, 2023, 91: 101167. doi:10.1016/j.mam.2022.101167 |
[18] | Chen YS, Ng HY, Chen YW, et al. Additive manufacturing of Schwann cell-laden collagen/alginate nerve guidance conduits by freeform reversible embedding regulate neurogenesis via exosomes secretion towards peripheral nerve regeneration[J]. Biomater Adv, 2023, 146: 213276. doi:10.1016/j.bioadv.2022.213276 |
[19] | Sun J, Yuan Q, Guo L, et al. Brain microvascular endothelial cell-derived exosomes protect neurons from ischemia-reperfusion injury in mice[J]. Pharmaceuticals: Basel, 2022, 15(10): 1287. doi:10.3390/ph15101287 |
[20] | Li J, Li JJ, Peng YW, et al. Dendritic cell derived exosomes loaded neoantigens for personalized cancer immunotherapies[J]. J Control Release, 2023, 353: 423-33. doi:10.1016/j.jconrel.2022.11.053 |
[21] | Jin S, Wang Y, Wu X, et al. Young exosome bio-nanoparticles restore aging-impaired tendon stem/progenitor cell function and reparative capacity[J]. Adv Mater, 2023, 35(18): e2211602. doi:10.1002/adma.202211602 |
[22] | You Q, Wang F, Du R, et al. m6 A reader YTHDF1-targeting engineered small extracellular vesicles for gastric cancer therapy via epigenetic and immune regulation[J]. Adv Mater, 2023, 35(8): e2204910. doi:10.1002/adma.202370054 |
[23] | Wang T, Liu QY, Chen XY, et al. Imaging and tracking of tumor extracellular vesicles to unravel the progression of ovarian carcinoma using fluorescent membrane probes[J]. Sens Actuat B Chem, 2024, 415: 135975. doi:10.1016/j.snb.2024.135975 |
[24] | Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer - implications for future improvements in cancer care[J]. Nat Rev Clin Oncol, 2018, 15(10): 617-38. doi:10.1038/s41571-018-0036-9 |
[25] | Sun T, Li YY, Wu J, et al. Downregulation of exosomal MHC-I promotes glioma cells escaping from systemic immunosurveillance[J]. Nanomed Nanotechnol Biol Med, 2022, 46: 102605. doi:10.1016/j.nano.2022.102605 |
[26] | Kim G, Kim M, Lee Y, et al. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes[J]. J Control Release, 2020, 317: 273-81. doi:10.1016/j.jconrel.2019.11.009 |
[27] | Zhan Q, Yi K, Cui X, et al. Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy[J]. Neuro Oncol, 2022, 24(11): 1871-83. doi:10.1093/neuonc/noac071 |
[28] | Bai L, Liu Y, Guo K, et al. Ultrasound facilitates naturally equipped exosomes derived from macrophages and blood serum for orthotopic glioma treatment[J]. ACS Appl Mater Interfaces, 2019, 11(16): 14576-87. doi:10.1021/acsami.9b00893 |
[29] | Xu Y, Feng K, Zhao H, et al. Tumor-derived extracellular vesicles as messengers of natural products in cancer treatment[J]. Theranostics, 2022, 12(4): 1683-714. doi:10.7150/thno.67775 |
[30] | Chen Q, Wu D, Wang Y, et al. Exosomes as novel delivery systems for application in traditional Chinese medicine[J]. Molecules, 2022, 27(22): 7789. doi:10.3390/molecules27227789 |
[31] | Yang TZ, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio [J]. Pharm Res, 2015, 32(6): 2003-14. doi:10.1007/s11095-014-1593-y |
[32] | Kim J, Zhu Y, Chen S, et al. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood-brain-barrier penetration and tumor microenvironment modulation[J]. J Nanobiotechnology, 2023, 21(1): 253. doi:10.1186/s12951-023-02006-x |
[33] | Nouri Z, Barfar A, Perseh S, et al. Exosomes as therapeutic and drug delivery vehicle for neurodegenerative diseases[J]. J Nanobio-technology, 2024, 22(1): 463. doi:10.1186/s12951-024-02681-4 |
[34] | Yang JL, Zhang XF, Chen XJ, et al. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia[J]. Mol Ther Nucleic Acids, 2017, 7: 278-87. doi:10.1016/j.omtn.2017.04.010 |
[35] | Ganesh RV, Luoma V, Reddy U. Acute management of ischaemic stroke[J]. Anaesth Intensive Care Med, 2022, 23(12): 747-53. doi:10.1016/j.mpaic.2022.10.004 |
[36] | Zhu ZH, Jia F, Ahmed W, et al. Neural stem cell-derived exosome as a nano-sized carrier for BDNF delivery to a rat model of ischemic stroke[J]. Neural Regen Res, 2023, 18(2): 404-9. doi:10.4103/1673-5374.346466 |
[37] | Song Y, Li Z, He T, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124[J]. Theranostics, 2019, 9(10): 2910-23. doi:10.7150/thno.30879 |
[38] | Zhang Y, Chopp M, Liu XS, et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons[J]. Mol Neurobiol, 2017, 54(4): 2659-73. doi:10.1007/s12035-016-9851-0 |
[39] | Zhou ST, Gao BY, Sun CC, et al. Vascular endothelial cell-derived exosomes protect neural stem cells against ischemia/reperfusion injury[J]. Neuroscience, 2020, 441: 184-96. doi:10.1016/j.neuroscience.2020.05.046 |
[40] | Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150: 137-49. doi:10.1016/j.biomaterials.2017.10.012 |
[41] | Zhao H, Li YJ, Chen LH, et al. HucMSCs-derived miR-206-knockdown exosomes contribute to neuroprotection in subarachnoid hemorrhage induced early brain injury by targeting BDNF[J]. Neuroscience, 2019, 417: 11-23. doi:10.1016/j.neuroscience.2019.07.051 |
[42] | Liu ZW, Wang B, Guo QH. miR-26b-5p-modified hUB-MSCs derived exosomes attenuate early brain injury during subarachnoid hemorrhage via MAT2A-mediated the p38 MAPK/STAT3 signaling pathway[J]. Brain Res Bull, 2021, 175: 107-15. doi:10.1016/j.brainresbull.2021.07.014 |
[43] | Han M, Cao Y, Guo X, et al. Mesenchymal stem cell-derived extracellular vesicles promote microglial M2 polarization after subarachnoid hemorrhage in rats and involve the AMPK/NF‑κB signaling pathway[J]. Biomed Pharmacother, 2021, 133: 111048. doi:10.1016/j.biopha.2020.111048 |
[44] | Duan S, Wang F, Cao J, et al. Exosomes derived from microRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial M1 polarization[J]. Drug Des Devel Ther, 2020, 14: 3143-58. doi:10.2147/dddt.s255828 |
[45] | Rehman FU, Liu Y, Zheng M, et al. Exosomes based strategies for brain drug delivery[J]. Biomaterials, 2023, 293: 121949. doi:10.1016/j.biomaterials.2022.121949 |
[46] | Xiao Y, Wang SK, Zhang Y, et al. Role of extracellular vesicles in neurodegenerative diseases[J]. Prog Neurobiol, 2021, 201: 102022. doi:10.1016/j.pneurobio.2021.102022 |
[47] | Kalluri R, LeBleu VS. The biology, function,and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. doi:10.1126/science.aau6977 |
[48] | Liu S, Fan M, Xu JX, et al. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology[J]. J Neuroinfla-mmation, 2022, 19(1): 35. doi:10.1186/s12974-022-02393-2 |
[49] | Wei H, Xu Y, Chen Q, et al. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis[J]. Cell Death Dis, 2020, 11(4): 290. doi:10.1038/s41419-020-2490-4 |
[50] | Iyaswamy A, Thakur A, Guan XJ, et al. Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer's disease[J]. Signal Transduct Target Ther, 2023, 8(1): 404. doi:10.1038/s41392-023-01657-4 |
[51] | Cui GH, Guo HD, Li H, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease[J]. Immun Ageing, 2019, 16: 10. doi:10.1186/s12979-019-0150-2 |
[52] | Huo Q, Shi Y, Qi Y, et al. Biomimetic silibinin-loaded macrophage-derived exosomes induce dual inhibition of Aβ aggregation and astrocyte activation to alleviate cognitive impairment in a model of Alzheimer's disease[J]. Mater Sci Eng C Mater Biol Appl, 2021, 129: 112365. doi:10.1016/j.msec.2021.112365 |
[53] | Wang H, Sui HJ, Zheng Y, et al. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway[J]. Nanoscale, 2019, 11(15): 7481-96. doi:10.1039/c9nr01255a |
[54] | Qi Y, Guo L, Jiang Y, et al. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles[J]. Drug Deliv, 2020, 27(1): 745-55. doi:10.1080/10717544.2020.1762262 |
[55] | Meng W, He C, Hao Y, et al. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source[J]. Drug Deliv, 2020, 27(1): 585-98. doi:10.1080/10717544.2020.1748758 |
[56] | Izco M, Blesa J, Schleef M, et al. Systemic exosomal delivery of shRNA minicircles prevents parkinsonian pathology[J]. Mol Ther, 2019, 27(12): 2111-22. doi:10.1016/j.ymthe.2019.08.010 |
[57] | Luo S, Sun X, Huang M, et al. Enhanced neuroprotective effects of epicatechin gallate encapsulated by bovine milk-derived exosomes against Parkinson's disease through antiapoptosis and antimitophagy[J]. J Agric Food Chem, 2021, 69(17): 5134-43. doi:10.1021/acs.jafc.0c07658 |
[58] | Xue C, Li X, Ba L, et al. MSC-derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of Parkinson's disease[J]. Aging Dis, 2021, 12(5): 1211-22. doi:10.14336/ad.2020.1221 |
[59] | Shakespear N, Ogura M, Yamaki J, et al. Astrocyte-derived exosomal microRNA miR-200a-3p prevents MPP+-induced apoptotic cell death through down-regulation of MKK4[J]. Neurochem Res, 2020, 45(5): 1020-33. doi:10.1007/s11064-020-02977-5 |
[60] | Peng H, Li Y, Ji W, et al. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson's disease[J]. ACS Nano, 2022, 16(1): 869-84. doi:10.1021/acsnano.1c08473 |
[61] | Zhang C, Shao W, Yuan H, et al. Engineered extracellular vesicle-based nanoformulations that coordinate neuroinflammation and immune homeostasis, enhancing Parkinson's disease therapy[J]. ACS Nano, 2024, 18(34): 23014-31. doi:10.1021/acsnano.4c04674 |
[62] | Kotowska-Zimmer A, Przybyl L, Pewinska M, et al. A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease[J]. Mol Ther Nucleic Acids, 2022, 28: 702-15. doi:10.1016/j.omtn.2022.04.031 |
[63] | Zhang L, Wu T, Shan Y, et al. Therapeutic reversal of Huntington's disease by in vivo self-assembled siRNAs[J]. Brain, 2021, 144(11): 3421-35. doi:10.1093/brain/awab354 |
[64] | Datson NA, González-Barriga A, Kourkouta E, et al. The expanded CAG repeat in the huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain[J]. PLoS One, 2017, 12(2): e0171127. doi:10.1371/journal.pone.0171127 |
[65] | Lee ST, Im W, Ban JJ, et al. Exosome-based delivery of miR-124 in a Huntington’s disease model[J]. J Mov Disord, 2017, 10(1): 45-52. doi:10.14802/jmd.16054 |
[66] | Wu TT, Yu MC, Zhang L, et al. I02 Systemic injection of exosomal sirna significantly reduced huntingtin expression in transgenic mice of Huntington's disease[C]//Experimental therapeutics-preclinical. BMJ Publishing Group Ltd, 2018, 89: A88-9. doi:10.1136/jnnp-2018-ehdn.238 |
[67] | Wu XY, Liao BY, Xiao D, et al. Encapsulation of bryostatin-1 by targeted exosomes enhances remyelination and neuroprotection effects in the cuprizone-induced demyelinating animal model of multiple sclerosis[J]. Biomater Sci, 2022, 10(3): 714-27. doi:10.1039/d1bm01142a |
[68] | Li Z, Liu F, He X, et al. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia[J]. Int Immunopharmacol, 2019, 67: 268-80. doi:10.1016/j.intimp.2018.12.001 |
[69] | Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neuro-degenerative disorders[J]. ACS Nano, 2019, 13(6): 6670-88. doi:10.1021/acsnano.9b01004 |
[70] | Zheng X, Sun K, Liu YH, et al. Resveratrol-loaded macrophage exosomes alleviate multiple sclerosis through targeting microglia[J]. J Control Release, 2023, 353: 675-84. doi:10.1016/j.jconrel.2022.12.026 |
[71] | Xu M, Feng T, Liu B, et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies[J]. Theranostics, 2021, 11(18): 8926-44. doi:10.7150/thno.62330 |
[72] | Meng LL, Zhang C, Yu P. Treating cancer through modulating exosomal protein loading and function: The prospects of natural products and traditional Chinese medicine[J]. Pharmacol Res, 2024, 203: 107179. doi:10.1016/j.phrs.2024.107179 |
[73] | Abedi M, Hajinejad M, Atabi F, et al. Exosome derived from human neural stem cells improves motor activity and neurogenesis in a traumatic brain injury model[J]. Biomed Res Int, 2022, 2022: 6409346. doi:10.1155/2022/6409346 |
[74] | Zhang W, Hong J, Zhang H, et al. Astrocyte-derived exosomes protect hippocampal neurons after traumatic brain injury by suppressing mitochondrial oxidative stress and apoptosis[J]. Aging: Albany NY, 2021, 13(17): 21642-58. doi:10.18632/aging.203508 |
[75] | Zhuang XY, Xiang XY, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain[J]. Mol Ther, 2011, 19(10): 1769-79. doi:10.1038/mt.2011.164 |
[76] | Xu F, Mu J, Teng Y, et al. Restoring oat nanoparticles mediated brain memory function of mice fed alcohol by sorting inflammatory dectin-1 complex into microglial exosomes[J]. Small, 2022, 18(6): e2105385. doi:10.1002/smll.202105385 |
[77] | Tsivion-Visbord H, Perets N, Sofer T, et al. Mesenchymal stem cells derived extracellular vesicles improve behavioral and biochemical deficits in a phencyclidine model of schizophrenia[J]. Transl Psychiatry, 2020, 10(1): 305. doi:10.1038/s41398-020-00988-y |
[78] | Hu Y, Zhao M, Wang H, et al. Exosome-sheathed ROS-responsive nanogel to improve targeted therapy in perimenopausal depression[J]. J Nanobiotechnology, 2023, 21(1): 261. doi:10.1186/s12951-023-02005-y |
[79] | Yu X, Bai Y, Han B, et al. Extracellular vesicle-mediated delivery of circDYM alleviates CUS-induced depressive-like behaviours[J]. J Extracell Vesicles, 2022, 11(1): e12185. doi:10.1002/jev2.12185 |
[80] | Fouad K, Popovich PG, Kopp MA, et al. The neuroanatomical-functional paradox in spinal cord injury[J]. Nat Rev Neurol, 2021, 17(1): 53-62. doi:10.1038/s41582-020-00436-x |
[81] | Huang W, Lin M, Yang C, et al. Rat bone mesenchymal stem cell-derived exosomes loaded with miR-494 promoting neurofilament regeneration and behavioral function recovery after spinal cord injury[J]. Oxid Med Cell Longev, 2021, 2021: 1634917. doi:10.1155/2021/1634917 |
[82] | Shin H, Oh S, Hong S, et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes[J]. ACS Nano, 2020, 14(5): 5435-44. doi:10.1021/acsnano.9b09119 |
[83] | Fan H, Chen Z, Tang HB, et al. Exosomes derived from olfactory ensheathing cells provided neuroprotection for spinal cord injury by switching the phenotype of macrophages/microglia[J]. Bioeng Transl Med, 2022, 7(2): e10287. doi:10.1002/btm2.10287 |
[84] | Chen JC, Wu JH, Mu JF, et al. An antioxidative Sophora exosome-encapsulated hydrogel promotes spinal cord repair by regulating oxidative stress microenvironment[J]. Nanomed Nanotechnol Biol Med, 2023, 47: 102625. doi:10.1016/j.nano.2022.102625 |
[85] | Xian P, Hei Y, Wang R, et al. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice[J]. Theranostics, 2019, 9(20): 5956-75. doi:10.7150/thno.33872 |
[86] | Nakano M, Nagaishi K, Konari N, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes[J]. Sci Rep, 2016, 6: 24805. doi:10.1038/srep24805 |
[87] | Gao X, Gao LF, Kong XQ, et al. Mesenchymal stem cell-derived extracellular vesicles carrying miR-99b-3p restrain microglial activation and neuropathic pain by stimulating autophagy[J]. Int Immunopharmacol, 2023, 115: 109695. doi:10.1016/j.intimp.2023.109695 |
[88] | Ikeda T, Kawabori M, Zheng Y, et al. Intranasal administration of mesenchymal stem cell-derived exosome alleviates hypoxic-ischemic brain injury[J]. Pharmaceutics, 2024, 16(4): 446. doi:10.3390/pharmaceutics16040446 |
[1] | Yi LU, Cunzhi² LIU, Wujun³ GENG, Xiaozhen⁴ ZHENG, Jingdun XIE, Guangfang⁶ ZHANG, Chao⁷ LIU, Yun⁸ LI, Yan⁹ QU, Lei ⁰ CHEN, Xizhao HUANG, Hang ² TIAN, Yuhui ³ LI, Hongxin ⁴ LI, Heying ⁵ ZHONG, Ronggui ⁶ TAO, Jie ⁷ ZHONG, Yue ⁸ ZHUANG, Junyang ⁹ MA, Yan²⁰ HU, Jian² FANG, Gaofeng ZHAO, Jianbin⁶ XIAO, Weifeng TU, Jiaze SUN, Yuting DUAN, Bao⁷ WANG. Sub-committee of Anesthesiology of Guangzhou Integrated Traditional Chinese and Western Medicine Society [J]. Journal of Southern Medical University, 2025, 45(8): 1800-1808. |
[2] | Yunhong YU, Wei XIE, Hui LI. Chaihu Shugan Decoction improves cognitive impairment after epilepsy in rats by regulating hippocampal NMDAR subunits via upregulating ASIC1 [J]. Journal of Southern Medical University, 2025, 45(7): 1506-1512. |
[3] | Hongyang LI, Wenxiong LIAO, Peng LEI, Chunyuan YANG, Yanying LI, Liping XUE, Duo TAN, Sijing LIU, Yi WU, Meilan CHEN. Toric-ICL shows better predictability and efficacy than FS-LASIK for myopia correction in patients with moderate to high myopia and astigmatism [J]. Journal of Southern Medical University, 2025, 45(6): 1113-1121. |
[4] | Zhiyue LIANG, Lishan XU, Keke LI, Milai YU, Shengli AN. A comparative study of different methods for treatment switching analysis in clinical trials [J]. Journal of Southern Medical University, 2025, 45(5): 1093-1102. |
[5] | Huali LI, Ting SONG, Jiawen LIU, Yongbao LI, Zhaojing JIANG, Wen DOU, Linghong ZHOU. Prognosis-guided optimization of intensity-modulated radiation therapy plans for lung cancer [J]. Journal of Southern Medical University, 2025, 45(3): 643-649. |
[6] | Hongli YANG, Yayun XIANG, Tingting TAN, Yang LEI. ORY-1001 inhibits glioblastoma cell growth by downregulating the Notch/HES1 pathway via suppressing lysine-specific demethylase 1 expression [J]. Journal of Southern Medical University, 2024, 44(8): 1620-1630. |
[7] | YANG Yang, LIU Gang, OU Yi, LU Wenqi. Lung-protective effect of esketamine combined with distal limb ischemic preconditioning in elderly patients undergoing thoracoscopic radical surgery for lung cancer: a randomized controlled trial in 160 cases [J]. Journal of Southern Medical University, 2024, 44(3): 484-490. |
[8] | Yuanyuan WANG, Tianjiao LAI, Danxia CHU, Jing BAI, Shuping YAN, Haixia QIN, Ruixia GUO. Megestrol acetate plus metformin for fertility-sparing treatment of atypical endometrial hyperplasia and early-stage endometrial adenocarcinoma: a prospective study [J]. Journal of Southern Medical University, 2024, 44(11): 2055-2062. |
[9] | KONG Zhen, ZHONG Hua, LIU Yongqiang, SUN Yongjian, YANG Shaozheng, JI Yuelun, WU Weiping. Outcomes and complications of open versus closed reduction and internal fixation for Delbet type II and III hip fractures in children and adolescents [J]. Journal of Southern Medical University, 2023, 43(11): 1971-1976. |
[10] | SUN Yi, JI Yachen, WU Kangfei, WANG Hao, GUO Yapeng, XU Xiangjun, SHANG Xianjin, YANG Qian, HUANG Xianjun, ZHOU Zhiming. Association of nutritional status with clinical outcomes of stroke patients with acute anterior circulation large vessel occlusion after emergency endovascular treatment [J]. Journal of Southern Medical University, 2022, 42(9): 1397-1402. |
[11] | LI Jiancheng, GUO Yun, CUI Wenjing, SUN Yue, YANG Dongkun, LIU Liang, WU Zhigang. Survival rate and quality of life of human papillomaviruse-negative patients with advanced oropharyngeal cancer receiving different treatments [J]. Journal of Southern Medical University, 2022, 42(8): 1230-1236. |
[12] | MENG Lingfei, ZHU Xueyan, YANG Liming, LI Xinyang, CHENG Siyu, GUO Shizheng, ZHUANG Xiaohua, ZOU Hongbin, CUI Wenpeng. Development and validation of a prediction model for treatment failure in peritoneal dialysis-associated peritonitis patients: a multicenter study [J]. Journal of Southern Medical University, 2022, 42(4): 546-553. |
[13] | WANG Yuegui, HONG Liwe, LÜ Guorong, YANG Shuping, LI Ling, HUANG Xuepeng, SHEN Haolin. Ultrasound combined with Ki67 detection for analyzing contributing factors of failure to cure and recurrence of hyperthyroidism in patients with Graves disease after 131I treatment [J]. Journal of Southern Medical University, 2022, 42(12): 1902-1906. |
[14] | . Preparation of doxorubicin-loaded metallic organic nanoparticles and their effect for enhancing efficacy of high-intensity focused ultrasound therapy in tumor-bearing mice [J]. Journal of Southern Medical University, 2021, 41(5): 640-648. |
[15] | . Progress in extracellular vesicle imaging methods [J]. Journal of Southern Medical University, 2020, 40(02): 279-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||