Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (9): 1997-2005.doi: 10.12122/j.issn.1673-4254.2025.09.19
Yuanyuan HAN(), Feng SUN, Yan LIU, Mengyue XU, Che XU, Na LI, Juan LI, Jianfeng WANG(
)
Received:
2025-02-27
Online:
2025-09-20
Published:
2025-09-28
Contact:
Jianfeng WANG
E-mail:1755813028@qq.com;wangjianfeng@163.com
Yuanyuan HAN, Feng SUN, Yan LIU, Mengyue XU, Che XU, Na LI, Juan LI, Jianfeng WANG. Differential expression of circRNAs in anterior lens capsules of high myopic patients with cataract[J]. Journal of Southern Medical University, 2025, 45(9): 1997-2005.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.09.19
circRNA | Forward (5'-3') | Reverse (5'-3') |
---|---|---|
ciRNA374 | TGGGAATAGAACTGCTGA | ATGGGCTGCTTTGTAGAG |
circRNA4906 | ATTCCTTGGGCAATGGTG | GTGGCAGTGGCTTGTTCT |
circRNA4418 | GCATTAGCCTTCAAAAGT | CCACAAGACCATCAGCAT |
circRNA4927 | TCAGGGTGAAGAGCGATTA | CCATTGCACCAGGAGAAC |
circRNA10422 | TCTGCCTGACATTGACCC | TGAGCCTAACATAGATTTCTTC |
circRNA12432 | CAGCCTCATTACATTTGC | ATTTGGGTCAAGGAGTGC |
hsa_circ_0007528 | GCTTTGATCTTGCCTCTG | ATGCTGAACAATCGCTGA |
hsa_circ_0004767 | AAAATAGCCCTGAGTGAA | AACCTGATGCCTGAAGAC |
Tab.1 Sequences of the primers for RT-qPCR of the circRNAs
circRNA | Forward (5'-3') | Reverse (5'-3') |
---|---|---|
ciRNA374 | TGGGAATAGAACTGCTGA | ATGGGCTGCTTTGTAGAG |
circRNA4906 | ATTCCTTGGGCAATGGTG | GTGGCAGTGGCTTGTTCT |
circRNA4418 | GCATTAGCCTTCAAAAGT | CCACAAGACCATCAGCAT |
circRNA4927 | TCAGGGTGAAGAGCGATTA | CCATTGCACCAGGAGAAC |
circRNA10422 | TCTGCCTGACATTGACCC | TGAGCCTAACATAGATTTCTTC |
circRNA12432 | CAGCCTCATTACATTTGC | ATTTGGGTCAAGGAGTGC |
hsa_circ_0007528 | GCTTTGATCTTGCCTCTG | ATGCTGAACAATCGCTGA |
hsa_circ_0004767 | AAAATAGCCCTGAGTGAA | AACCTGATGCCTGAAGAC |
Fig.1 Total circRNAs detected in the anterior capsular membranes of high myopia with cataract (HMC) and age-related cataract (ARC) lenses. A: Venn diagram of circRNAs in HMC group and ARC group. B: Volcano plot of differentially expressed circRNAs in the two groups (red represents up-regulated significantly differentially expressed genes, blue represents down-regulated ones, and gray represents those without significant differential expression. C: Bar chart of differentially expressed circRNAs. D: Proportional distribution chart of circRNA gene composition types. E: Length distribution chart of circRNAs. F: Clustering analysis chart of circRNAs: different colors represent the levels of expression (red represents high expression genes, and blue represents low expression genes).
Fig.2 GO and KEGG enrichment analysis of the differentially expressed circRNAs. A, C: Biological process, cellular component, and molecular function analysis of differentially up-regulated and down-regulated circRNAs. P<0.05; B, D: KEGG pathways of differentially up-regulated and down-regulated circRNAs, where Rich factor represents the number of differentially expressed genes in the KEGG pathway divided by the total number of genes in the KEGG pathway (Rich factor=S gene number/B gene number). The larger the Rich factor, the higher the degree of KEGG enrichment. P<0.05 indicates significant enrichment.
Fig.3 The ceRNA network diagram of circRNAs interaction. Circles represent circRNAs, arrows represent miRNAs, rectangles represent mRNAs, blue represents ceRNA interactions of up-regulated circRNAs, and red represents ceRNA interactions of down-regulated circRNAs.
Fig.4 Results of the RT-qPCR validation of the differentially expressed circRNAs. A: Expression of the up-regulated circRNAs in the anterior capsular tissue of the lens of HMC patients. B: Expression of the down-regulated circRNA in the anterior capsular tissue of the lens of HMC patients. **P<0.01, ***P< 0.001, ****P<0.0001.
Fig.5 Overexpression of hsa_circ_0007528 inhibits proliferation and migration of LECs and promotes apoptosis. A: Transfection efficiency of hsa_circ_0007528 verified by RT-qPCR. B: CCK-8 assay for assessing cell proliferation of LECs with hsa_circ_0007528 overexpression. C: Transwell cell migration assay for assessing changes in migration of LECs with hsa_circ_0007528 overexpression (Scale bar=50 μm). D: Flow cytometry for analyzing changes in apoptosis of LECs with hsa_circ_0007528 overexpression. n=3, **P<0.01, ***P<0.001, ****P<0.0001.
[1] | Yang K, Li JX, Zhang WH, et al. Comparison of pre-chop technique using a reverse chopper and classic stop-and-chop technique in the treatment of high myopia associated with nuclear cataract[J]. BMC Surg, 2022, 22(1): 206. doi:10.1186/s12893-022-01658-0 |
[2] | Wang JX, Li Y, Musch DC, et al. Progression of myopia in school-aged children after COVID-19 home confinement[J]. JAMA Ophthalmol, 2021, 139(3): 293-300. doi:10.1001/jamaophthalmol.2020.6239 |
[3] | Ueta T, Makino S, Yamamoto Y, et al. Pathologic myopia: an overview of the current understanding and interventions[J]. Glob Health Med, 2020, 2(3): 151-5. doi:10.35772/ghm.2020.01007 |
[4] | Hoang QV, Chan X, Zhu XJ, et al. Editorial: advances in management and treatment of high myopia and its complications[J]. Front Med (Lausanne), 2022, 9: 846540. doi:10.3389/fmed.2022.846540 |
[5] | Vinod K, Salim S. Addressing glaucoma in myopic eyes: diagnostic and surgical challenges[J]. Bioengineering (Basel), 2023, 10(11): 1260. doi:10.3390/bioengineering10111260 |
[6] | He WW, Yao YQ, Zhang KK, et al. Clinical characteristics and early visual outcomes of highly myopic cataract eyes: the Shanghai high myopia study[J]. Front Med (Lausanne), 2022, 8: 671521. doi:10.3389/fmed.2021.671521 |
[7] | Du R, Xie SQ, Igarashi-Yokoi T, et al. Continued increase of axial length and its risk factors in adults with high myopia[J]. JAMA Ophthalmol, 2021, 139(10): 1096-103. doi:10.1001/jamaophthalmol.2021.3303 |
[8] | Tang JC, Liu HH, Sun MS, et al. Aqueous humor cytokine response in the contralateral eye after first-eye cataract surgery in patients with primary angle-closure glaucoma, high myopia or type 2 diabetes mellitus[J]. Front Biosci (Landmark Ed), 2022, 27(7): 222. doi:10.31083/j.fbl2707222 |
[9] | Hu YR, Han X, Chen Y, et al. Regulation of the inflammatory response, proliferation, migration, and epithelial-mesenchymal transition of human lens epithelial cells by the lncRNA-MALAT1/miR-26a-5p/TET1 signaling axis[J]. J Ophthalmol, 2023, 2023: 9942880. doi:10.1155/2023/9942880 |
[10] | Han X, Hu YR, Chen Y, et al. Expression of cytokines in the aqueous humor of cataract patients with pathologic myopia and simple high myopia[J]. Mol Vis, 2024, 30: 369-77. |
[11] | Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs[J]. Cell Death Differ, 2022, 29(3): 481-91. doi:10.1038/s41418-022-00948-7 |
[12] | Zhou YD, Li BY, Wang ZC, et al. m6A modifications of circular RNAs in ischemia-induced retinal neovascularization[J]. Int J Med Sci, 2023, 20(2): 254-61. doi:10.7150/ijms.79409 |
[13] | Chen X, Wang Y, Wang JN, et al. m6A modification of circSPECC1 suppresses RPE oxidative damage and maintains retinal homeostasis[J]. Cell Rep, 2022, 41(7): 111671. doi:10.1016/j.celrep.2022.111671 |
[14] | Ma Y, Liu Y, Shu BT, et al. CircMAP3K4 protects human lens epithelial cells from H2O2-induced dysfunction by targeting miR-193a-3p/PLCD3 axis in age-related cataract[J]. Cell Cycle, 2023, 22(3): 303-15. doi:10.1080/15384101.2022.2114587 |
[15] | Qu B, Wang J, Li Y, et al. Hsa_circ_0023826 protects against glaucoma by regulating miR-188-3p/MDM4 axis[J]. Acta Biochim Pol, 2023, 70(2): 253-60. |
[16] | Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins[J]. Mol Cancer, 2020, 19(1): 172. doi:10.1186/s12943-020-01286-3 |
[17] | Fang R, Li JH, Li HL, et al. CircRNA 06209 inhibits cataract development by sponging miR-6848-5p and regulating ALOX15 expression[J]. Exp Eye Res, 2023, 235: 109640. doi:10.1016/j.exer.2023.109640 |
[18] | Jiang WB, Xiao DC, Wu C, et al. Circular RNA-based therapy provides sustained and robust neuroprotection for retinal ganglion cells[J]. Mol Ther Nucleic Acids, 2024, 35(3): 102258. doi:10.1016/j.omtn.2024.102258 |
[19] | Zhang WX, He YX, Zhang Y. CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential[J]. Pharmacol Res, 2023, 197: 106946. doi:10.1016/j.phrs.2023.106946 |
[20] | Hu YR, Fan YC, Li N, et al. Expression of LncRNAs in anterior capsule of lens in patients with pathologic myopia complicated with cataract[J]. Int Ophthalmol, 2024, 45(1): 10. doi:10.1007/s10792-024-03366-5 |
[21] | Sun F, Li N, Liu Y, et al. miR-224-3p regulates ferroptosis and inflammation in lens epithelial cells by targeting ACSL4[J]. Exp Eye Res, 2025, 254: 110306. doi:10.1016/j.exer.2025.110306 |
[22] | De Piano M, Cacciamani A, Balzamino BO, et al. Biomarker signature in aqueous humor mirrors lens epithelial cell activation: new biomolecular aspects from cataractogenic myopia[J]. Biomolecules, 2023, 13(9): 1328. doi:10.3390/biom13091328 |
[23] | Liu SY, Jin Z, Xia RY, et al. Protection of human lens epithelial cells from oxidative stress damage and cell apoptosis by KGF-2 through the Akt/Nrf2/HO-1 pathway[J]. Oxid Med Cell Longev, 2022, 2022: 6933812. doi:10.1155/2022/6933812 |
[24] | Guo CJ, Ning XN, Zhang J, et al. Ultraviolet B radiation induces oxidative stress and apoptosis in human lens epithelium cells by activating NF‑κB signaling to down-regulate sodium vitamin C transporter 2 (SVCT2) expression[J]. Cell Cycle, 2023, 22(12): 1450-62. doi:10.1080/15384101.2023.2215084 |
[25] | Li ZN, Ge MX, Yuan ZF. microRNA-182-5p protects human lens epithelial cells against oxidative stress-induced apoptosis by inhibiting NOX4 and p38 MAPK signalling[J]. BMC Ophthalmol, 2020, 20(1): 233. doi:10.1186/s12886-020-01489-8 |
[26] | Janbandhu V, Tallapragada V, Patrick R, et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction[J]. Cell Stem Cell, 2022, 29(2): 281-97.e12. doi:10.1016/j.stem.2021.10.009 |
[27] | Ma B, Yang L, Jing RH, et al. Effects of Interleukin-6 on posterior capsular opacification[J]. Exp Eye Res, 2018, 172: 94-103. doi:10.1016/j.exer.2018.03.013 |
[28] | Retamal MA, Altenberg GA. Role and posttranslational regulation of Cx46 hemichannels and gap junction channels in the eye lens[J]. Front Physiol, 2022, 13: 864948. doi:10.3389/fphys.2022.864948 |
[29] | Huang GQ, Liang M, Liu HY, et al. CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway[J]. Cell Death Dis, 2020, 11(12): 1065. doi:10.1038/s41419-020-03276-1 |
[30] | Liang SQ, Dou SQ, Li WF, et al. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p[J]. Aging (Albany NY), 2020, 12(17): 17271-87. doi:10.18632/aging.103683 |
[31] | Sun Z, Zhang A, Hou MY, et al. Circular RNA hsa_circ_0000034 promotes the progression of retinoblastoma via sponging microRNA-361-3p[J]. Bioengineered, 2020, 11(1): 949-57. doi:10.1080/21655979.2020.1814670 |
[1] | . Curcumin induces human lens epithelial cell apoptosis and cell cycle arrest by inhibiting Wnt/β-catenin signaling pathway [J]. Journal of Southern Medical University, 2021, 41(5): 722-728. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||