Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (6): 1317-1326.doi: 10.12122/j.issn.1673-4254.2025.06.21
Huanyu JI1(), Rui WANG2, Shengxiang GAO1,4, Wengang CHE1,3(
)
Received:
2024-11-13
Online:
2025-06-20
Published:
2025-06-27
Contact:
Wengang CHE
E-mail:2285873874@qq.com;goooglethink@gmail.com
Supported by:
Huanyu JI, Rui WANG, Shengxiang GAO, Wengang CHE. SG-UNet: a melanoma segmentation model enhanced with global attention and self-calibrated convolution[J]. Journal of Southern Medical University, 2025, 45(6): 1317-1326.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.06.21
Fig.7 Four components obtained from melanoma after Haar wavelet transform. A: Low-frequency information; H: Horizontal high-frequency information; V: Vertical high-frequency information; D: Diagonal high-frequency information.
Model | Dice | IoU | Recall | Precision |
---|---|---|---|---|
UNet[ | 89.46 | 82.13 | 90.44 | 89.64 |
UNet++[ | 89.65 | 82.36 | 89.98 | 90.30 |
AttUNet[ | 90.03 | 82.90 | 89.73 | 91.27 |
ResUNet[ | 90.86 | 84.26 | 91.51 | 91.20 |
ResUNet++[ | 91.29 | 84.87 | 91.94 | 91.45 |
FAT-Net[ | 89.03 | 82.02 | 91.00 | - |
CA-net[ | 85.35 | 74.44 | 78.76 | 93.14 |
CKDNet[ | 87.79 | 80.41 | 90.55 | - |
PraNet[ | 87.37 | 77.57 | 86.64 | 88.11 |
MSCNet[ | 90.51 | 82.67 | 89.61 | 91.84 |
DAGAN[ | 88.07 | 81.13 | 90.72 | - |
CPFNet[ | 87.69 | 79.88 | 89.53 | - |
Ours | 92.34 | 86.48 | 93.05 | 92.21 |
Tab.1 Performance metrics for each model in the ISIC 2018 dataset
Model | Dice | IoU | Recall | Precision |
---|---|---|---|---|
UNet[ | 89.46 | 82.13 | 90.44 | 89.64 |
UNet++[ | 89.65 | 82.36 | 89.98 | 90.30 |
AttUNet[ | 90.03 | 82.90 | 89.73 | 91.27 |
ResUNet[ | 90.86 | 84.26 | 91.51 | 91.20 |
ResUNet++[ | 91.29 | 84.87 | 91.94 | 91.45 |
FAT-Net[ | 89.03 | 82.02 | 91.00 | - |
CA-net[ | 85.35 | 74.44 | 78.76 | 93.14 |
CKDNet[ | 87.79 | 80.41 | 90.55 | - |
PraNet[ | 87.37 | 77.57 | 86.64 | 88.11 |
MSCNet[ | 90.51 | 82.67 | 89.61 | 91.84 |
DAGAN[ | 88.07 | 81.13 | 90.72 | - |
CPFNet[ | 87.69 | 79.88 | 89.53 | - |
Ours | 92.34 | 86.48 | 93.05 | 92.21 |
Model | Dice | IoU | Recall | Precision |
---|---|---|---|---|
UNet[ | 89.20 | 81.98 | 91.24 | 88.81 |
UNet++[ | 89.50 | 82.23 | 91.22 | 88.92 |
AttUNet[ | 90.67 | 83.98 | 92.07 | 90.22 |
ResUNet[ | 91.98 | 85.99 | 93.21 | 91.51 |
ResUNet++[ | 90.60 | 84.05 | 92.62 | 89.96 |
FAT-Net[ | 85.00 | 76.53 | 83.92 | - |
CA-net[ | 86.30 | 75.91 | 85.45 | 87.18 |
DAGAN[ | 84.25 | 75.94 | 83.63 | - |
SESV[ | 83.92 | 75.31 | 83.26 | - |
PraNet[ | 87.71 | 78.23 | 87.58 | 87.84 |
MB-DCNN[ | 84.27 | 76.03 | 83.25 | - |
MSCNet[ | 90.99 | 83.47 | 91.11 | 90.87 |
CPFNet[ | 84.03 | 75.46 | 83.44 | - |
Ours | 92.41 | 86.62 | 93.70 | 91.80 |
Tab.2 Performance metrics for each model in the ISIC 2017 dataset
Model | Dice | IoU | Recall | Precision |
---|---|---|---|---|
UNet[ | 89.20 | 81.98 | 91.24 | 88.81 |
UNet++[ | 89.50 | 82.23 | 91.22 | 88.92 |
AttUNet[ | 90.67 | 83.98 | 92.07 | 90.22 |
ResUNet[ | 91.98 | 85.99 | 93.21 | 91.51 |
ResUNet++[ | 90.60 | 84.05 | 92.62 | 89.96 |
FAT-Net[ | 85.00 | 76.53 | 83.92 | - |
CA-net[ | 86.30 | 75.91 | 85.45 | 87.18 |
DAGAN[ | 84.25 | 75.94 | 83.63 | - |
SESV[ | 83.92 | 75.31 | 83.26 | - |
PraNet[ | 87.71 | 78.23 | 87.58 | 87.84 |
MB-DCNN[ | 84.27 | 76.03 | 83.25 | - |
MSCNet[ | 90.99 | 83.47 | 91.11 | 90.87 |
CPFNet[ | 84.03 | 75.46 | 83.44 | - |
Ours | 92.41 | 86.62 | 93.70 | 91.80 |
Model | SCConv | HWD | GAM | Dice | IoU | Recall | Precision |
---|---|---|---|---|---|---|---|
Baseline | × | × | × | 89.20 | 81.98 | 91.24 | 88.81 |
Model① | × | × | × | 89.26 | 81.78 | 91.96 | 87.87 |
Model② | × | √ | × | 91.05 | 84.54 | 92.21 | 90.73 |
Model③ | × | √ | √ | 91.39 | 85.05 | 92.94 | 90.75 |
Model④ | √ | √ | √ | 92.41 | 86.62 | 93.70 | 91.80 |
Tab.3 Ablation study results on the ISIC dataset
Model | SCConv | HWD | GAM | Dice | IoU | Recall | Precision |
---|---|---|---|---|---|---|---|
Baseline | × | × | × | 89.20 | 81.98 | 91.24 | 88.81 |
Model① | × | × | × | 89.26 | 81.78 | 91.96 | 87.87 |
Model② | × | √ | × | 91.05 | 84.54 | 92.21 | 90.73 |
Model③ | × | √ | √ | 91.39 | 85.05 | 92.94 | 90.75 |
Model④ | √ | √ | √ | 92.41 | 86.62 | 93.70 | 91.80 |
Model | SCConv | HWD | GAM | Dice | IoU | Recall | Precision |
---|---|---|---|---|---|---|---|
Baseline | × | × | × | 89.46 | 82.13 | 90.44 | 89.64 |
Model① | × | × | × | 90.17 | 83.06 | 91.08 | 90.03 |
Model② | × | √ | × | 91.35 | 84.89 | 91.84 | 91.54 |
Model③ | × | √ | √ | 91.38 | 84.88 | 91.70 | 91.68 |
Model④ | √ | √ | √ | 92.34 | 86.48 | 93.05 | 92.21 |
Tab.4 Ablation study results on the ISIC 2018 dataset
Model | SCConv | HWD | GAM | Dice | IoU | Recall | Precision |
---|---|---|---|---|---|---|---|
Baseline | × | × | × | 89.46 | 82.13 | 90.44 | 89.64 |
Model① | × | × | × | 90.17 | 83.06 | 91.08 | 90.03 |
Model② | × | √ | × | 91.35 | 84.89 | 91.84 | 91.54 |
Model③ | × | √ | √ | 91.38 | 84.88 | 91.70 | 91.68 |
Model④ | √ | √ | √ | 92.34 | 86.48 | 93.05 | 92.21 |
1 | Mateen M, Hayat S, Arshad F, et al. Hybrid deep learning framework for melanoma diagnosis using dermoscopic medical images[J]. Diagnostics, 2024, 14(19): 2242. doi:10.3390/diagnostics14192242 |
2 | Ali AR, Li JP, O'Shea SJ, et al. A deep learning based approach to skin lesion border extraction with a novel edge detector in dermoscopy images[C]//2019 International Joint Conference on Neural Networks (IJCNN). July 14-19, 2019, Budapest, Hungary. IEEE, 2019: 1-7. doi:10.1109/ijcnn.2019.8852134 |
3 | Ali AR, Li JP, Yang G, et al. A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images[J]. PeerJ Comput Sci, 2020, 6: e268. doi:10.7717/peerj-cs.268 |
4 | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-41. doi:10.1007/978-3-319-24574-4_28 |
5 | Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015: 3431-40. doi:10.1109/cvpr.2015.7298965 |
6 | Wang G, Ma QS, Li YY, et al. A skin lesion segmentation network with edge and body fusion[J]. Appl Soft Comput, 2025, 170: 112683. doi:10.1016/j.asoc.2024.112683 |
7 | Wu HS, Chen SH, Chen GL, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation[J]. Med Image Anal, 2022, 76: 102327. doi:10.1016/j.media.2021.102327 |
8 | 王 娜, 贾 伟, 赵雪芬, 等. 基于边缘关键点和边缘注意力的黑色素瘤图像分割方法[J].中国医学物理学杂志 [J]. 2024, 41(10): 1225-36. |
9 | Liu Y, Shao Z, Hoffmann N. Global attention mechanism: Retain information to enhance channel-spatial interactions [J]. 2021, DOI:10.48550/arXiv.2112.05561 . |
10 | Liu JJ, Hou QB, Cheng MM, et al. Improving convolutional networks with self-calibrated convolutions[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 10093-102. doi:10.1109/cvpr42600.2020.01011 |
11 | Xu GP, Liao WT, Zhang X, et al. Haar wavelet downsampling: a simple but effective downsampling module for semantic segmentation[J]. Pattern Recognit, 2023, 143: 109819. doi:10.1016/j.patcog.2023.109819 |
12 | Niu ZY, Zhong GQ, Yu H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. doi:10.1016/j.neucom.2021.03.091 |
13 | Upadhyay AK, Bhandari AK. Advances in deep learning models for resolving medical image segmentation data scarcity problem: a topical review[J]. Arch Comput Meth Eng, 2024, 31(3): 1701-19. doi:10.1007/s11831-023-10028-9 |
14 | Woo S, Park J, Lee JY, et al. CBAM: convolutional block attention module[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. doi:10.1007/978-3-030-01234-2_1 |
15 | Ioannou Y, Robertson D, Cipolla R, et al. Deep roots: improving CNN efficiency with hierarchical filter groups[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 5977-86. doi:10.1109/cvpr.2017.633 |
16 | Porwik P, Lisowska A. The haar–wavelet transform in digital image processing: its status and achievements[J]. Instit Comp Sci, 2004,13:79-98. |
17 | Makandar A, Halalli B. Image enhancement techniques using highpass and lowpass filters[J]. Int J Comput Appl, 2015, 109(14): 21-7. doi:10.5120/19256-0999 |
18 | Zaynidinov H. Digital image processing with two-dimensional haar wavelets[J]. Int J Adv Trends Comput Sci Eng, 2020, 9(3): 2729-34. doi:10.30534/ijatcse/2020/38932020 |
19 | Codella NCF, Gutman D, Celebi ME, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). April 4-7, 2018, Washington, DC, USA. IEEE, 2018: 168-72. doi:10.1109/isbi.2018.8363547 |
20 | Codella N, Rotemberg V, Tschandl P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)[EB/OL]. 2019: 1902.03368. . doi:10.48550/arXiv.1902.03368 |
21 | Jiang HY, Diao ZS, Shi TY, et al. A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation[J]. Comput Biol Med, 2023, 157: 106726. doi:10.1016/j.compbiomed.2023.106726 |
22 | Soomro TA, Afifi AJ, Gao JB, et al. Strided U-Net model: retinal vessels segmentation using dice loss[C]//2018 Digital Image Computing: Techniques and Applications (DICTA). December 10-13, 2018, Canberra, ACT, Australia. IEEE, 2018: 1-8. doi:10.1109/dicta.2018.8615770 |
23 | Cheng BW, Girshick R, Dollár P, et al. Boundary IoU: improving object-centric image segmentation evaluation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 15329-37. doi:10.1109/cvpr46437.2021.01508 |
24 | Shamir RR, Duchin Y, Kim J, et al. Continuous dice coefficient: a method for evaluating probabilistic segmentations [J]. 2018, DOI:10.1101/306977 . |
25 | Zhou ZW, Siddiquee MMR, Tajbakhsh N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Trans Med Imaging, 2020, 39(6): 1856-67. doi:10.1109/tmi.2019.2959609 |
26 | Wang SH, Li L, Zhuang XH. AttU-NET: attention U-Net for brain tumor segmentation[M]//Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer International Publishing, 2022: 302-11. doi:10.1007/978-3-031-09002-8_27 |
27 | Rahman H, Bukht TFN, Imran A, et al. A deep learning approach for liver and tumor segmentation in CT images using ResUNet[J]. Bioengineering, 2022, 9(8): 368. doi:10.3390/bioengineering9080368 |
28 | Jha D, Smedsrud PH, Riegler MA, et al. ResUNet: an advanced architecture for medical image segmentation[C]//2019 IEEE International Symposium on Multimedia (ISM). December 9-11, 2019, San Diego, CA, USA. IEEE, 2019: 225-2255. doi:10.1109/ism46123.2019.00049 |
29 | Gu R, Wang GT, Song T, et al. CA-net: comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Trans Med Imaging, 2021, 40(2): 699-711. doi:10.1109/tmi.2020.3035253 |
30 | Jin QG, Cui H, Sun CM, et al. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation[J]. Appl Soft Comput, 2021, 99: 106881. doi:10.1016/j.asoc.2020.106881 |
31 | Feng SL, Zhao HM, Shi F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Trans Med Imaging, 2020, 39(10): 3008-18. doi:10.1109/tmi.2020.2983721 |
32 | Xie YT, Zhang JP, Xia Y, et al. A mutual bootstrapping model for automated skin lesion segmentation and classification[J]. IEEE Trans Med Imaging, 2020, 39(7): 2482-93. doi:10.1109/tmi.2020.2972964 |
33 | Yang G, Yu SM, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction[J]. IEEE Trans Med Imaging, 2018, 37(6): 1310-21. doi:10.1109/tmi.2017.2785879 |
34 | Fan DP, Ji GP, Zhou T, et al. PraNet: parallel reverse attention network for polyp segmentation[M]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2020. Cham: Springer International Publishing, 2020: 263-73. doi:10.1007/978-3-030-59725-2_26 |
35 | Xie YT, Zhang JP, Lu H, et al. SESV: accurate medical image segmentation by predicting and correcting errors[J]. IEEE Trans Med Imag, 2021, 40(1): 286-96. doi:10.1109/tmi.2020.3025308 |
36 | Li Z, Zhang L. Multi-scale context fusion network for melanoma segmentation[J]. KSII Trans Internet Inf Syst, 2024, 18(7): 1888-906. doi:10.3837/tiis.2024.07.009 |
[1] | Qian ZHAO, Zhen ZHANG, Xingqi ZHOU, Xiangyu RONG, Xuerou LIU, Xinli ZHAO, Haojie WANG, Jinlong PANG, Shanshan LI, Xian LI. Aqueous extract of Chuan Xiong Rhizoma enhances inhibitory effect of temozolomide against brain metastasis of melanoma in mice [J]. Journal of Southern Medical University, 2024, 44(6): 1088-1097. |
[2] | SHI Wenhui, LIU Xiaolian, ZHANG Guiming, YE Linxuan, ZHOU Runhua, LI Yilei, YU Le. RITA selectively inhibits proliferation of BAP1-deficient cutaneous melanoma cells in vitro [J]. Journal of Southern Medical University, 2023, 43(5): 710-717. |
[3] | LI Juan, WANG Ailian, LI Ning, ZHU Yingze, LI Kun, LIU Hao, GAO Ziqing. Aumolertinib inhibits growth of human choroidal melanoma MUM-2B cells in vitro and in vivo [J]. Journal of Southern Medical University, 2022, 42(11): 1604-1610. |
[4] | ZHONG Youwen, CHE Wengang, GAO Shengxiang. A lightweight multiscale target object detection network for melanoma based on attention mechanism manipulation [J]. Journal of Southern Medical University, 2022, 42(11): 1662-1671. |
[5] | . A tissue recovery-based brain tumor image registration method [J]. Journal of Southern Medical University, 2021, 41(2): 292-298. |
[6] | LUO Xin, REN Chonglu, LIU Xiaolian, ZHANG Guiming, HUANG Sisi, YU Le, LI Yilei. Screening of drugs that selectively inhibit uveal melanoma cells with SF3B1 mutations [J]. Journal of Southern Medical University, 2021, 41(12): 1835-1842. |
[7] | . Segmentation of organs at risk in nasopharyngeal cancer for radiotherapy using a selfadaptive Unet network [J]. Journal of Southern Medical University, 2020, 40(11): 1579-1586. |
[8] | . Interleukin-12 over-expression in malignant melanoma B16 cells reduces programmed death-1 expression on T cells in mice with immune reconstitution [J]. Journal of Southern Medical University, 2020, 40(06): 856-863. |
[9] | . Dynamic imaging of melanoma development in nude mice using high-frequency ultrasound and optical coherence tomography [J]. Journal of Southern Medical University, 2019, 39(07): 772-. |
[10] | . miR-122-5p inhibits the proliferation of melanoma cells by targeting NOP14 [J]. Journal of Southern Medical University, 2018, 38(11): 1360-. |
[11] | . Segmentation of brain tumor on magnetic resonance images using 3D full-convolutional densely connected convolutional networks [J]. Journal of Southern Medical University, 2018, 38(06): 661-. |
[12] | . Expression of protein 4.1 family in melanoma cell lines and its effect on cell proliferation [J]. Journal of Southern Medical University, 2016, 36(05): 649-. |
[13] | . Medical image segmentation based on guided filtering and multi-atlas [J]. Journal of Southern Medical University, 2015, 35(09): 1263-. |
[14] | . Brain image segmentation based on multi-weighted probabilistic atlas [J]. Journal of Southern Medical University, 2015, 35(08): 1143-. |
[15] |
.
High-intensity focused ultrasound inhibits tumor metastasis in a melanoma-bearing mouse model [J]. Journal of Southern Medical University, 2015, 35(02): 223-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||