1 |
Ding X, Jiang X, Zheng H, et al. MARes-Net: multi-scale attention residual network for jaw cyst image segmentation[J]. Front Bioeng Biotechnol, 2024, 12: 1454728.
|
2 |
Niu G, Zhang G, Chen JM, et al. A 3-year follow-up clinical study on the preservation for vitality of involved tooth in jaw cysts through an innovative method[J]. Sci Rep, 2024, 14(1): 128.
|
3 |
Zheng HX, Jiang XL, Xu X, et al. MFI-net: multi-level feature integration network with SE-Res2Conv encoder for jaw cyst segmentation[J]. IEEE Access, 2024, 12: 67355-67.
|
4 |
Li H, Liu Z, Jiang L, et al. Epidemiological analysis of the clinicopathologic characteristics, treatment, and prognosis of 2648 jaw cysts in West China[J]. Chin Med J: Engl, 2024, 137(9): 1124-6.
|
5 |
Tran T P, Ngoc V T N, Linh L N P, et al. Effectiveness of marsupialization on the reduction of cystic jaw lesions in children: A scoping review[J]. Oral Science International, 2025, 22(1): e1267.
|
6 |
Jiang X, Zheng H, Yuan Z, et al. HIMS-Net: Horizontal-vertical interaction and multiple side-outputs network for cyst segmentation in jaw images[J]. Math Biosci Eng, 2024, 21(3): 4036-55.
|
7 |
Guangyan W, Yanan J, Aihemaiti G, et al. Research on Cyst of Jaw Detection Algorithm Based on Alex Net Deep Learning Model. Research Square[J]. 2024.
|
8 |
梁利渡, 张浩杰, 鲁 倩, 等. aFaster RCNN: 一种基于平扫 CT 的多疾病阶段胰腺病灶检测模型[J]. 南方医科大学学报, 2023, 43(5): 755. DOI: 10.12122/j.issn.1673-4254.2023.05.11
|
9 |
吴雪扬, 张 煜, 张 华, 等. 基于注意力机制和多模态特征融合的猕猴脑磁共振图像全脑分割[J]. 南方医科大学学报, 2023, 43(12): 2118. DOI: 10.12122/j.issn.1673-4254.2023.12.17
|
10 |
黄品瑜, 钟丽明, 郑楷宜, 等. 多期相 CT 合成辅助的腹部多器官图像分割[J].南方医科大学学报, 2024, 44(1): 83. DOI: 10.12122/j.issn.1673-4254.2024.01.10
|
11 |
Pham DL, Xu C, Prince JL. Current methods in medical image segmentation[J]. Annu Rev Biomed Eng, 2000, 2: 315-37.
|
12 |
Varga-Szemes A, Muscogiuri G, Schoepf UJ, et al. Clinical feasibility of a myocardial signal intensity threshold-based semi-automated cardiac magnetic resonance segmentation method[J]. Eur Radiol, 2016, 26(5): 1503-11.
|
13 |
Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[J]. J Electron Imaging, 2004, 13(1): 146.
|
14 |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Trans Syst, Man, Cybern, 9(1): 62-6.
|
15 |
Kapur JN, Sahoo PK, Wong AKC. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Comput Vis Graph Image Process, 1985, 29(3): 273-85.
|
16 |
Adams R, Bischof L. Seeded region growing[J]. IEEE Trans Pattern Anal Machine Intell, 16(6): 641-7.
|
17 |
Mehnert A, Jackway P. An improved seeded region growing algorithm[J]. Pattern Recognit Lett, 1997, 18(10): 1065-71.
|
18 |
Fan J, Yau DY, Elmagarmid AK, et al. Automatic image segmentation by integrating color-edge extraction and seeded region growing[J]. IEEE Trans Image Process, 2001, 10(10): 1454-66.
|
19 |
Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm[J]. Comput Geosci, 1984, 10(2/3): 191-203.
|
20 |
Ng HP, Ong SH, Foong KWC, et al. Medical image segmentation using K-means clustering and improved watershed algorithm[C]// IEEE Southwest Symposium on Image Analysis and Interpretation. Denver, CO. IEEE, 2006, 61-65.
|
21 |
Sulaiman S, Mat Isa N. Adaptive fuzzy-K-means clustering algorithm for image segmentation[J]. IEEE Trans Consumer Electron, 56(4): 2661-8.
|
22 |
Cumani A. Edge detection in multispectral images[J]. CVGIP Graph Models Image Process, 1991, 53(1): 40-51.
|
23 |
Canny J. A computational approach to edge detection[J]. IEEE Trans.Pattern Anal. Mach. Intell, 1986, 8(6): 679-98.
|
24 |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015. Boston, MA, USA. IEEE, 2015: 3431-40.
|
25 |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention (MICCAI). Cham: Springer International Publishing, 2015: 234-41.
|
26 |
Ozturk B, Taspinar YS, Koklu M, et al. Automatic segmentation of the maxillary sinus on cone beam computed tomographic images with U-Net deep learning model[J]. Eur Arch Oto Rhino Laryngol, 2024, 281(11): 6111-21.
|
27 |
Xu L, Qiu K, Li K, et al. Automatic segmentation of ameloblastoma on ct images using deep learning with limited data[J]. BMC Oral Health, 2024, 24(1): 55.
|
28 |
Su S, Jia X, Zhan L, et al. Automatic tooth periodontal ligament segmentation of cone beam computed tomography based on instance segmentation network[J]. Heliyon, 2024, 10(2): e24097.
|
29 |
Azad R, Asadi-Aghbolaghi M, Fathy M, et al. Bi-directional ConvLSTM U-Net with densley connected convolutions[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). October 27-28, 2019. Seoul, Korea (South). IEEE, 2019.
|
30 |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017. Honolulu, HI. IEEE, 2017: 4700-4708.
|
31 |
Sønderby SK, Sønderby CK, Nielsen H, et al. Convolutional LSTM networks for subcellular localization of proteins[C]//Algorithms for Computational Biology. Cham: Springer International Publishing, 2015: 68-80.
|
32 |
Tan MX, Le QV. Efficientnet: Rethinking model scaling for convolutional neural networks[C]//International conference on machine learning (ICML). 2019: 6105-14.
|
33 |
Chollet F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017. Honolulu, HI. IEEE, 2017: 1251-1258.
|
34 |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 7132-41.
|
35 |
Ioffe S, Szegedy C, Paranhos L, et al. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning (ICML). 2015: 448-56.
|
36 |
Ramachandran P, Zoph B, Le QV. Searching for activation functions[J]. arXiv preprint arXiv:, 2017.
|
37 |
Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015. Boston, MA, USA. IEEE, 2015: 1-9.
|
38 |
Mao AQ, Mohri M, Zhong YT. Cross-entropy loss functions: theoretical analysis and applications[C]// International Conference on Machine Learning (ICML). Honolulu, Hawaii, USA, 2023, 992(26): 23803-28.
|
39 |
Li XY, Sun XF, Meng YX, et al. Dice loss for data-imbalanced NLP tasks[J]. 2019: 1911.02855. .
|
40 |
Al-Dhabyani W, Gomaa M, Khaled H, et al. Dataset of breast ultrasound images[J]. Data Brief, 2020, 28: 104863.
|
41 |
Jiang M, Zhai FH, Kong J. A novel deep learning model DDU-net using edge features to enhance brain tumor segmentation on MR images[J]. Artif Intell Med, 2021, 121: 102180.
|
42 |
Yang YY, Feng C, Wang RF. Automatic segmentation model combining U-Net and level set method for medical images[J]. Expert Syst Appl, 2020, 153: 113419.
|
43 |
Zhao C, Shuai RJ, Ma L, et al. Segmentation of dermoscopy images based on deformable 3D convolution and ResU-NeXt++[J]. Med Biol Eng Comput, 2021, 59(9): 1815-32.
|
44 |
Ma J, He Y, Li F, et al. Segment anything in medical images[J]. Nat Commun, 2024, 15(1): 654.
|
45 |
Lin AL, Chen BZ, Xu JY, et al. DS-TransUNet: dual swin transformer U-Net for medical image segmentation[J]. IEEE Trans Instrum Meas, 2022, 71: 1-15.
|
46 |
He A, Wang K, Li T, et al. H2Former: an efficient hierarchical hybrid transformer for medical image segmentation[J]. IEEE Trans Med Imaging, 2023, 42(9): 2763-75.
|
47 |
Cao H, Wang YY, Chen J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation[C]//European conference on computer vision (ECCV). Cham: Springer Nature Switzerland, 2022: 205-18.
|
48 |
Zhou ZW, Rahman Siddiquee MM, Tajbakhsh N, et al. UNet++: A nested U-Net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer International Publishing, 2018: 3-11.
|
49 |
Zhang ZX, Liu QJ, Wang YH. Road extraction by deep residual U-net[J]. IEEE Geosci Remote Sensing Lett, 15(5): 749-53.
|
50 |
Valanarasu JMJ, Oza P, Hacihaliloglu I, et al. Medical transformer: gated axial-attention for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention (MICCAI). Cham: Springer International Publishing, 2021: 36-46.
|
51 |
Chen JN, Lu YY, Yu QH, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. 2021: 2102. 04306. .
|
52 |
Valanarasu JMJ, Patel VM. UNeXt: MLP-based rapid medical image segmentation network[C]//Medical Image Computing and Computer Assisted Intervention (MICCAI). Cham: Springer Nature Switzerland, 2022: 23-33.
|
53 |
Chen G, Li L, Dai Y, et al. AAU-Net: an adaptive attention U-Net for breast lesions segmentation in ultrasound images[J]. IEEE Trans Med Imaging, 2023, 42(5): 1289-300.
|
54 |
Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017. Venice. IEEE, 2017: 618-26.
|