Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (12): 2300-2307.doi: 10.12122/j.issn.1673-4254.2024.12.05
Previous Articles Next Articles
Xiaoling SU1(
), Daoyong LIAO1(
), Chao LI1, Li CHEN1, Jingyun WANG1, Tian GAN1, Haodang LUO1, Ning WU3, Jun HE1,2(
)
Received:2024-05-06
Online:2024-12-20
Published:2024-12-26
Contact:
Jun HE
E-mail:xiaoling2020s@163.com;l1326253952@163.com;junhe@usc.edu.cn
Supported by:Xiaoling SU, Daoyong LIAO, Chao LI, Li CHEN, Jingyun WANG, Tian GAN, Haodang LUO, Ning WU, Jun HE. Protective effect of Streptococcus salivarius K12 against Mycoplasma pneumoniae infection in mice[J]. Journal of Southern Medical University, 2024, 44(12): 2300-2307.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.12.05
| Primer name | Primer sequence 5'-3' |
|---|---|
| Mp 16S rRNA | F:TAACGGCCTACCAAGGCAATGA |
| R:AGTCAAACTCTAGCCATTACCTGC | |
| Mp 16S rRNA probe | ACGGCCCATACTCCTACGGGAGGCAGCAGT |
| P1[ | F:CGCCGCAAAGATGAATGAC |
| R:TGTCCTTCCCCATCTAACAGTTC | |
| CARDS | F:TTCCACTTCAGAAACACCCACAGC |
| R:TCAATCAGGGCACGCAAACG | |
| Cyclophilin[ | F:AGCACTGGAGAGAAAGGATTTGG |
| R:TCTTCTTGCTGGTCTTGCCATT | |
| MUC5ac | F:ACGACACTTTTCAGTACCAATGAC |
| R:GCTTCCTTACAGATGCAGTCCT | |
| MMP-9 | F:CGGATTTGGCCGTATTGGGC |
| R:TGATGGCATGCACTGTGGTC | |
| TNF-α | F:CCACCACGCTCTTCTGTCTAC |
| R:TGGGCTACAGGCTTGTCACT | |
| IL-6 | F:TTCACAAGTCGGAGGCTTA |
| R:CAAGTGCATCATCGTTGTTC | |
| CXCL1 | F:TGGCTGGGATTCACCTCAAG |
| R:CAAGCCTCGCGACCATTCTT | |
| TLR-2[ | F:GCCACCATTTCCACGGACT |
| R:GGCTTCCTCTTGGCCTGG | |
| TLR-4[ | F:TTTATTCAGAGCCGTTGGTG |
| R:CAGAGGATTGTCCTCCCATT | |
| Col3a1[ | F:GCCCACAGCCTTCTACAC |
| R:CCAGGGTCACCATTTCTC | |
| GAPDH | F:AGGTCGGTGTGAACGGATTTG |
| R:TGTAGACCATGTAGTTGAGGTCA |
Tab.1 Primer sequences for RT-qPCR
| Primer name | Primer sequence 5'-3' |
|---|---|
| Mp 16S rRNA | F:TAACGGCCTACCAAGGCAATGA |
| R:AGTCAAACTCTAGCCATTACCTGC | |
| Mp 16S rRNA probe | ACGGCCCATACTCCTACGGGAGGCAGCAGT |
| P1[ | F:CGCCGCAAAGATGAATGAC |
| R:TGTCCTTCCCCATCTAACAGTTC | |
| CARDS | F:TTCCACTTCAGAAACACCCACAGC |
| R:TCAATCAGGGCACGCAAACG | |
| Cyclophilin[ | F:AGCACTGGAGAGAAAGGATTTGG |
| R:TCTTCTTGCTGGTCTTGCCATT | |
| MUC5ac | F:ACGACACTTTTCAGTACCAATGAC |
| R:GCTTCCTTACAGATGCAGTCCT | |
| MMP-9 | F:CGGATTTGGCCGTATTGGGC |
| R:TGATGGCATGCACTGTGGTC | |
| TNF-α | F:CCACCACGCTCTTCTGTCTAC |
| R:TGGGCTACAGGCTTGTCACT | |
| IL-6 | F:TTCACAAGTCGGAGGCTTA |
| R:CAAGTGCATCATCGTTGTTC | |
| CXCL1 | F:TGGCTGGGATTCACCTCAAG |
| R:CAAGCCTCGCGACCATTCTT | |
| TLR-2[ | F:GCCACCATTTCCACGGACT |
| R:GGCTTCCTCTTGGCCTGG | |
| TLR-4[ | F:TTTATTCAGAGCCGTTGGTG |
| R:CAGAGGATTGTCCTCCCATT | |
| Col3a1[ | F:GCCCACAGCCTTCTACAC |
| R:CCAGGGTCACCATTTCTC | |
| GAPDH | F:AGGTCGGTGTGAACGGATTTG |
| R:TGTAGACCATGTAGTTGAGGTCA |
Fig.1 Construction of M. pneumoniae-infected mouse model and optimization of conditions for K12 probiotic treatment. A: Cultivation of M. pneumoniae on solid plate. B: General condition of the mice 3 days after infection with M. pneumoniae. C: Changes in body weight of the mice at different time points after infection. D: M. pneumoniae DNA detection in mice. E-H: Detection of TNF-α and IL-6 mRNA expressions in mouse lung tissues. *P<0.05, **P<0.01, ****P<0.0001. #P<0.05, ###P<0.001, ####P<0.0001 vs 0. (n=3-5).
Fig.2 M. pneumoniae load in the lung tissue of the mice after prophylactic administration of K12 probiotics. A,B: qRT-PCR for detecting M. pneumoniae P1 protein and CARDS mRNA in the lung tissue. *P<0.05, ****P<0.0001 (n=5).
| Group | WBC (106/L) | MN# (106/L) | PMN# (106/L) | MN (%) | PMN (%) |
|---|---|---|---|---|---|
| Control | 157.60±92.75 | 129.60±91.60 | 28.00±21.52 | 79.50±19.33 | 20.50±19.33 |
| K12+PBS | 171.00±55.67 | 157.20±55.83 | 13.80±0.44 | 91.08±3.30 | 8.92±3.30 |
| PBS+Mp | 2032.20±399.44**** | 685.40±185.17**** | 1346.80±291.22**** | 33.88±6.19 | 66.12±6.19 |
| K12+Mp | 905.60±665.89## | 372.60±217.14# | 533.00±468.64## | 53.90±26.18 | 46.10±26.18 |
Tab.2 Leukocyte classification in BALF of M. pneumoniae mice treated with K12 probiotic
| Group | WBC (106/L) | MN# (106/L) | PMN# (106/L) | MN (%) | PMN (%) |
|---|---|---|---|---|---|
| Control | 157.60±92.75 | 129.60±91.60 | 28.00±21.52 | 79.50±19.33 | 20.50±19.33 |
| K12+PBS | 171.00±55.67 | 157.20±55.83 | 13.80±0.44 | 91.08±3.30 | 8.92±3.30 |
| PBS+Mp | 2032.20±399.44**** | 685.40±185.17**** | 1346.80±291.22**** | 33.88±6.19 | 66.12±6.19 |
| K12+Mp | 905.60±665.89## | 372.60±217.14# | 533.00±468.64## | 53.90±26.18 | 46.10±26.18 |
Fig.3 Changes in levels of inflammatory factors in serum and lung tissue of M. pneumoniae mice with K12 pretreatment. A-C: ELISA for detecting serum levels of sIgA, TNF‑α and IL-6. D-F: qRT-PCR for detecting CXCL1, TNF‑α and IL-6 mRNA expressions in the lung tissue. G-H: HE staining of lung tissues and the pathological scores. I-L: qRT-PCR and Western blotting for TLR2 and TLR4 expression. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ##P<0.01, ###P<0.001, ####P<0.0001 vs Control. (n=5).
Fig.4 Transcriptional levels of airway remodeling factors in lung tissues and AB/PAS staining of mouse lung tissue. A-C: mRNA levels of MMP9, MUC5ac and COL3A1 in the lung tissues detected by qRT-PCR. D: AB/PAS staining. E: AB/PAS staining score. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; ###P<0.001 vs Control. (n=5).
| 1 | Waites KB, Xiao L, Liu Y, et al. Mycoplasma pneumoniae from the respiratory tract and beyond[J]. Clin Microbiol Rev, 2017, 30(3): 747-809. |
| 2 | Bajantri B, Venkatram S, Diaz-Fuentes G. Mycoplasma pneumoniae: a potentially severe infection[J]. J Clin Med Res, 2018, 10(7): 535-44. |
| 3 | Zhang ZK, Wan RJ, Yuan Q, et al. Cell damage and neutrophils promote the infection of Mycoplasma pneumoniae and inflammatory response[J]. Microb Pathog, 2022, 169: 105647. |
| 4 | Tamiya S, Yoshikawa E, Ogura M, et al. Vaccination using inactivated Mycoplasma pneumoniae induces detrimental infiltration of neutrophils after subsequent infection in mice[J]. Vaccine, 2020, 38(32): 4979-87. |
| 5 | Meyer Sauteur PM, Beeton ML, European Society of Clinical Microbiology and Infectious Diseases Study Group for Mycoplasma and Chlamydia Infections study group. Mycoplasma pneumoniae: delayed re-emergence after COVID-19 pandemic restrictions[J]. Lancet Microbe, 2024, 5(2): e100-1. |
| 6 | Chen Y, Zhang Y, Tang QN, et al. Efficacy of doxycycline therapy for macrolide-resistant Mycoplasma pneumoniae pneumonia in children at different periods[J]. Ital J Pediatr, 2024, 50(1): 38. |
| 7 | di Pierro F, Colombo M, Zanvit A, et al. Use of Streptococcus salivarius K12 in the prevention of streptococcal and viral pharyngotonsillitis in children[J]. Drug Healthc Patient Saf, 2014, 6: 15-20. |
| 8 | Mokhtar M, Rismayuddin NAR, Mat Yassim AS, et al. Streptococcus salivarius K12 inhibits Candida albicans aggregation, biofilm formation and dimorphism[J]. Biofouling, 2021, 37(7): 767-76. |
| 9 | Laws GL, Hale JDF, Kemp RA. Human systemic immune response to ingestion of the oral probiotic Streptococcus salivarius BLIS K12[J]. Probiotics Antimicrob Proteins, 2021, 13(6): 1521-9. |
| 10 | di Pierro F, Iqtadar S, Mumtaz SU, et al. Clinical effects of Streptococcus salivarius K12 in hospitalized COVID-19 patients: results of a preliminary study[J]. Microorganisms, 2022, 10(10): 1926. |
| 11 | MacDonald KW, Chanyi RM, Macklaim JM, et al. Streptococcus salivarius inhibits immune activation by periodontal disease pathogens[J]. BMC Oral Health, 2021, 21(1): 245. |
| 12 | 徐叔云. 药理实验方法学[M]. 3版. 北京: 人民卫生出版社, 2002. |
| 13 | 梁珂莹. 应用TaqMan实时荧光定量PCR优化肺炎支原体生长条件的研究[D]. 南华大学,2021. |
| 14 | Iannuzo N, Insel M, Marshall C, et al. CC16 deficiency in the context of early-life Mycoplasma pneumoniae infection results in augmented airway responses in adult mice[J]. Infect Immun, 2022, 90(2): e0054821. |
| 15 | Daniel S, Phillippi D, Schneider LJ, et al. Exposure to diesel exhaust particles results in altered lung microbial profiles, associated with increased reactive oxygen species/reactive nitrogen species and inflammation, in C57Bl/6 wildtype mice on a high-fat diet[J]. Part Fibre Toxicol, 2021, 18(1): 3. |
| 16 | Wang T, Sun HM, Lu ZT, et al. The CARDS toxin of Mycoplasma pneumoniae induces a positive feedback loop of type 1 immune response[J]. Front Immunol, 2022, 13: 1054788. |
| 17 | Li YT, Shao FY, Zheng SW, et al. Alteration of Streptococcus salivarius in buccal mucosa of oral lichen planus and controlled clinical trial in OLP treatment[J]. Probiotics Antimicrob Proteins, 2020, 12(4): 1340-8. |
| 18 | Tamiya S, Yoshikawa E, Ogura M, et al. Neutrophil-mediated lung injury both via TLR2-dependent production of IL-1α and IL-12 p40, and TLR2-independent CARDS toxin after Mycoplasma pneumoniae infection in mice[J]. Microbiol Spectr, 2021, 9(3): e0158821. |
| 19 | Li G, Fan LP, Wang YQ, et al. High co-expression of TNF‑α and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia[J]. Mol Med, 2019, 25(1): 38. |
| 20 | Mei XZ, Wang J, Zhang C, et al. Apigenin suppresses mycoplasma-induced alveolar macrophages necroptosis via enhancing the methylation of TNF‑α promoter by PPARγ‑Uhrf1 axis[J]. Phytomedicine, 2023, 108: 154504. |
| 21 | Chen M, Deng H, Zhao Y, et al. Toll-like receptor 2 modulates pulmonary inflammation and TNF‑α release mediated by Mycoplasma pneumoniae [J]. Front Cell Infect Microbiol, 2022, 12: 824027. |
| 22 | Luo H, He J, Qin L, et al. Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response[J]. Clin Exp Immunol, 2021, 203(1): 66-79. |
| 23 | Johnson MDL, Younis US, Menghani SV, et al. CC16 binding to α4β1 integrin protects against Mycoplasma pneumoniae infection[J]. Am J Respir Crit Care Med, 2021, 203(11): 1410-8. |
| 24 | Ma Y, Gu YQ, Zhang XX, et al. High expression of MUC5AC, MUC5B, and layilin plays an essential role in prediction in the development of plastic bronchitis caused by MPP[J]. Front Microbiol, 2022, 13: 911228. |
| 25 | Tunçer S, Karaçam S. Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia [J]. Arch Microbiol, 2020, 202(10): 2825-40. |
| 26 | Vertillo Aluisio G, Spitale A, Bonifacio L, et al. Streptococcus salivarius 24SMBc genome analysis reveals new biosynthetic gene clusters involved in antimicrobial effects on Streptococcus pneumoniae and Streptococcus pyogenes [J]. Microorganisms, 2022, 10(10): 2042. |
| 27 | Garcia-Castillo V, Tomokiyo M, Raya Tonetti F, et al. Alveolar macrophages are key players in the modulation of the respiratory antiviral immunity induced by orally administered Lacticasei-bacillus rhamnosus CRL1505[J]. Front Immunol, 2020, 11: 568636. |
| 28 | Zhang NY, Zeng WW, Du TF, et al. Lacticaseibacillus casei CNRZ1874 supplementation promotes M1 alveolar macrophage activation and attenuates Mycoplasma pneumoniae pneumonia[J]. J Appl Microbiol, 2023, 134(3): lxad022. |
| [1] |
.
Comparison of three approaches to establishing Balb/c mouse models of hind-limb ischemia [J]. Journal of Southern Medical University, 2014, 34(08): 1167-. |
| [2] |
.
Optimization of streptozotocin dosing for establishing tumor-bearing diabetic mouse models [J]. Journal of Southern Medical University, 2014, 34(06): 827-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||