Journal of Southern Medical University ›› 2018, Vol. 38 ›› Issue (07): 830-.
Previous Articles Next Articles
Online:
Published:
Abstract: Objective To study the protective effect of MRL-45696, an inhibitor of poly(ADP- ribose) polymerase-1 (PARP-1), against DNA damage after myocardial ischemia/reperfusion (I/R) in diabetic rats. Methods Rat models of type 2 diabetes mellitus were established by high-fat feeding and a single peritoneal dose of streptozotocin. Forty diabetic rats were randomized equally into diabetic group, sham-operated group, sham-operated group with MRL-45696 treatment, I/R injury model group and I/R injury group with MRL-45696 treatment. The rats in MRL-45696-treated groups were subjected to daily intragastric administration of MRL-45696 (50 mg/kg) for 7 consecutive days, after which sham operation was performed or myocardial I/R injury was induced by ligation of the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min. The range of myocardial infarction, plasma cardiac troponin I (cTnI), serum creatine kinase (CK), lactate dehydrogenase (LDH) activity, malondialdehyde (MDA), superoxide dismutase (SOD) activity, and cardiac myocyte apoptosis were detected. The levels of γ-H2AX, cleaved caspase-3, PARP-1, and PAR were detected with Western blotting, and the level of NAD was detected using colorimetry. Results The infarct size was significantly smaller in MRL-45696 treatment group than in I/R injury group (P<0.05). In I/R model group, the levels of cTnI, CK, and LDH in the plasma or serum and MDA, γ-H2AX, cleaved caspase-3 and apoptotic rate in the cardiac myocytes were significantly higher than those in the other groups (P<0.05), and SOD activity was significantly decreased (P<0.05). Compared with I/R model group, the rats with MRL- 45696 treatment showed significantly decreased levels of cTnI, CK, LDH, MDA, γ-H2AX, cleaved caspase-3, PARP- 1, PAR expression and cell apoptosis with significantly increased levels of SOD and NAD (P<0.05). Conclusion MRL-45696 can inhibit excessive activation of PARP-1, increase intracellular level of NAD and inhibit cardiac myocyte apoptosis to alleviate myocardial I/R-induced DNAdamage and reduce myocardial infarct size in diabetic rats.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/
https://www.j-smu.com/EN/Y2018/V38/I07/830