Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (11): 2340-2349.doi: 10.12122/j.issn.1673-4254.2025.11.06
Liuqing LIU1(
), Kun WANG1, Xueqing WANG2, Bingxin DU3
Received:2025-04-23
Online:2025-11-20
Published:2025-11-28
Contact:
Liuqing LIU
E-mail:liuliuqing@ahtcm.edu.cn
Liuqing LIU, Kun WANG, Xueqing WANG, Bingxin DU. Lycium barbarum polysaccharides alleviates cisplatin-induced granulosa cell injury by downregulating miR-23a[J]. Journal of Southern Medical University, 2025, 45(11): 2340-2349.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.11.06
| Group | CDDP exposure duration(h) | |||
|---|---|---|---|---|
| 0 | 12 | 24 | 48 | |
| NC | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
| CDDP 1.25 | 0.97±0.15 | 0.87±0.10 | 0.65±0.07a | 0.61±0.07a |
| CDDP 2.5 | 0.98±0.14 | 0.77±0.09b | 0.50±0.03a | 0.41±0.04a |
| CDDP 5 | 0.94±0.12 | 0.65±0.08a | 0.42±0.03a | 0.28±0.04a |
| CDDP 10 | 0.97±0.10 | 0.55±0.10a | 0.32±0.03a | 0.25±0.06a |
Tab.1 KGN cell viability after cisplatin treatment at different concentrations for 0, 12, 24, and 48 h (n=6, Mean±SD)
| Group | CDDP exposure duration(h) | |||
|---|---|---|---|---|
| 0 | 12 | 24 | 48 | |
| NC | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
| CDDP 1.25 | 0.97±0.15 | 0.87±0.10 | 0.65±0.07a | 0.61±0.07a |
| CDDP 2.5 | 0.98±0.14 | 0.77±0.09b | 0.50±0.03a | 0.41±0.04a |
| CDDP 5 | 0.94±0.12 | 0.65±0.08a | 0.42±0.03a | 0.28±0.04a |
| CDDP 10 | 0.97±0.10 | 0.55±0.10a | 0.32±0.03a | 0.25±0.06a |
| Group | LBP exposure duration (h) | ||
|---|---|---|---|
| 12 | 24 | 48 | |
| NC | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
| MC | 0.71±0.04a | 0.59±0.06a | 0.52±0.07a |
| LBP-L | 0.72±0.04 | 0.74±0.03c | 0.58±0.07e |
| LBP-M | 0.80±0.09 | 0.85±0.06c | 0.74±0.04c |
| LBP-H | 0.76±0.11 | 0.70±0.06f | 0.65±0.04df |
Tab.2 KGN cell viability after LBP treatment for 12, 24, and 48 h (n=6, Mean±SD)
| Group | LBP exposure duration (h) | ||
|---|---|---|---|
| 12 | 24 | 48 | |
| NC | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
| MC | 0.71±0.04a | 0.59±0.06a | 0.52±0.07a |
| LBP-L | 0.72±0.04 | 0.74±0.03c | 0.58±0.07e |
| LBP-M | 0.80±0.09 | 0.85±0.06c | 0.74±0.04c |
| LBP-H | 0.76±0.11 | 0.70±0.06f | 0.65±0.04df |
| Group | Apoptosis rate (%) |
|---|---|
| NC | 5.27±0.22 |
| MC | 45.70±1.14a |
| LBP-L | 29.29±0.52ce |
| LBP-M | 16.55±0.02c |
| LBP-H | 27.82±0.28ce |
Tab.3 Apoptosis rate of KGN cells in different groups (n=3, Mean±SD)
| Group | Apoptosis rate (%) |
|---|---|
| NC | 5.27±0.22 |
| MC | 45.70±1.14a |
| LBP-L | 29.29±0.52ce |
| LBP-M | 16.55±0.02c |
| LBP-H | 27.82±0.28ce |
| Group | AMH (pg/mL) |
|---|---|
| NC | 370.05±14.23 |
| MC | 45.99±2.23a |
| LBP-L | 155.49±9.19ce |
| LBP-M | 209.59±11.30c |
| LBP-H | 182.18±6.44ce |
Tab.4 AMH levels in KGN cell in each group (n=6, Mean±SD)
| Group | AMH (pg/mL) |
|---|---|
| NC | 370.05±14.23 |
| MC | 45.99±2.23a |
| LBP-L | 155.49±9.19ce |
| LBP-M | 209.59±11.30c |
| LBP-H | 182.18±6.44ce |
| Group | Bax | Caspase-3 | Bcl-2 |
|---|---|---|---|
| NC | 0.21±0.01 | 0.14±0.00 | 0.42±0.04 |
| MC | 0.45±0.02a | 0.42±0.01a | 0.09±0.02b |
| LBP-L | 0.39±0.01ce | 0.37±0.00ce | 0.25±0.02c |
| LBP-M | 0.28±0.03c | 0.27±0.00c | 0.38±0.04d |
| LBP-H | 0.36±0.02ce | 0.32±0.00ce | 0.28±0.00d |
Tab.5 Relative expression levels of apoptosis-related proteins in KGN cells in each group (n=3, Mean±SD)
| Group | Bax | Caspase-3 | Bcl-2 |
|---|---|---|---|
| NC | 0.21±0.01 | 0.14±0.00 | 0.42±0.04 |
| MC | 0.45±0.02a | 0.42±0.01a | 0.09±0.02b |
| LBP-L | 0.39±0.01ce | 0.37±0.00ce | 0.25±0.02c |
| LBP-M | 0.28±0.03c | 0.27±0.00c | 0.38±0.04d |
| LBP-H | 0.36±0.02ce | 0.32±0.00ce | 0.28±0.00d |
| Group | p-PI3K | PI3K | p-AKT | AKT |
|---|---|---|---|---|
| NC | 0.25±0.01 | 0.47±0.01 | 0.47±0.01 | 0.48±0.01 |
| MC | 0.06±0.01a | 0.16±0.01a | 0.21±0.01a | 0.33±0.01a |
| LBP-L | 0.09±0.01ce | 0.24±0.02f | 0.29±0.01ce | 0.41±0.01ce |
| LBP-M | 0.16±0.01c | 0.38±0.00c | 0.42±0.02c | 0.46±0.01c |
| LBP-H | 0.12±0.01ce | 0.31±0.00ce | 0.35±0.01ce | 0.43±0.01ce |
Tab.6 Relative protein expression levels of the PI3K/AKT signaling pathway in KGN cells in each group (n=3, Mean±SD)
| Group | p-PI3K | PI3K | p-AKT | AKT |
|---|---|---|---|---|
| NC | 0.25±0.01 | 0.47±0.01 | 0.47±0.01 | 0.48±0.01 |
| MC | 0.06±0.01a | 0.16±0.01a | 0.21±0.01a | 0.33±0.01a |
| LBP-L | 0.09±0.01ce | 0.24±0.02f | 0.29±0.01ce | 0.41±0.01ce |
| LBP-M | 0.16±0.01c | 0.38±0.00c | 0.42±0.02c | 0.46±0.01c |
| LBP-H | 0.12±0.01ce | 0.31±0.00ce | 0.35±0.01ce | 0.43±0.01ce |
| Group | MiR-23a |
|---|---|
| NC | 1.00±0.02 |
| MC | 2.50±0.13a |
| LBP-L | 1.89±0.05ce |
| LBP-M | 1.56±0.06c |
| LBP-H | 1.66±0.08c |
Tab.7 miR-23a expression levels in KGN cells in each group (n=6, Mean±SD)
| Group | MiR-23a |
|---|---|
| NC | 1.00±0.02 |
| MC | 2.50±0.13a |
| LBP-L | 1.89±0.05ce |
| LBP-M | 1.56±0.06c |
| LBP-H | 1.66±0.08c |
| Group | MiR-23a |
|---|---|
| NC | 1.00±0.09 |
| inhibitor-NC | 1.02±0.07 |
| inhibitor | 0.43±0.02ag |
| mimic-NC | 0.98±0.06 |
| mimic | 1.65±0.04ah |
Tab.8 Effect of lentiviral transfection on miR-23a expression in KGN cells (n=6, Mean±SD)
| Group | MiR-23a |
|---|---|
| NC | 1.00±0.09 |
| inhibitor-NC | 1.02±0.07 |
| inhibitor | 0.43±0.02ag |
| mimic-NC | 0.98±0.06 |
| mimic | 1.65±0.04ah |
| Group | Cell viability (n=6) | Apoptosis rate (%, n=3) |
|---|---|---|
| NC | 1.00±0.00 | 5.50±0.53 |
| MC | 0.41±0.03a | 44.49±0.38a |
| LBP | 0.74±0.06c | 18.20±0.84c |
| inhibitor-NC+LBP | 0.76±0.08c | 17.32±0.23c |
| inhibitor+LBP | 0.88±0.09c | 13.12±0.39cei |
| mimic-NC+LBP | 0.76±0.04c | 17.64±0.35c |
| mimic+LBP | 0.64±0.09d | 27.62±0.73cej |
Tab.9 Effect of miR-23a overexpression and knockdown on KGN cell viability and apoptosis rate (Mean±SD)
| Group | Cell viability (n=6) | Apoptosis rate (%, n=3) |
|---|---|---|
| NC | 1.00±0.00 | 5.50±0.53 |
| MC | 0.41±0.03a | 44.49±0.38a |
| LBP | 0.74±0.06c | 18.20±0.84c |
| inhibitor-NC+LBP | 0.76±0.08c | 17.32±0.23c |
| inhibitor+LBP | 0.88±0.09c | 13.12±0.39cei |
| mimic-NC+LBP | 0.76±0.04c | 17.64±0.35c |
| mimic+LBP | 0.64±0.09d | 27.62±0.73cej |
| Group | AMH (pg/mL) |
|---|---|
| NC | 358.92±16.15 |
| MC | 54.23±5.93a |
| LBP | 217.87±8.79c |
| inhibitor-NC+LBP | 212.64±7.93c |
| inhibitor+LBP | 259.52±6.73cei |
| mimic-NC+LBP | 210.80±8.02c |
| mimic+LBP | 163.54±5.61cej |
Tab.10 Effect of miR-23a overexpression and knockdown on AMH secretion in KGN cells (n=6, Mean±SD)
| Group | AMH (pg/mL) |
|---|---|
| NC | 358.92±16.15 |
| MC | 54.23±5.93a |
| LBP | 217.87±8.79c |
| inhibitor-NC+LBP | 212.64±7.93c |
| inhibitor+LBP | 259.52±6.73cei |
| mimic-NC+LBP | 210.80±8.02c |
| mimic+LBP | 163.54±5.61cej |
| Group | MiR-23a |
|---|---|
| NC | 1.00±0.05 |
| MC | 2.49±0.13a |
| LBP | 1.58±0.10c |
| inhibitor-NC+LBP | 1.58±0.09c |
| inhibitor+LBP | 1.20±0.05cei |
| mimic-NC+LBP | 1.59±0.07c |
| mimic+LBP | 1.99±0.12cej |
Tab.11 Effect of lentiviral transfection on LBP-mediated regulation of miR-23a expression in KGN cells (n=6, Mean±SD)
| Group | MiR-23a |
|---|---|
| NC | 1.00±0.05 |
| MC | 2.49±0.13a |
| LBP | 1.58±0.10c |
| inhibitor-NC+LBP | 1.58±0.09c |
| inhibitor+LBP | 1.20±0.05cei |
| mimic-NC+LBP | 1.59±0.07c |
| mimic+LBP | 1.99±0.12cej |
| Group | p-PI3K | PI3K | p-AKT | AKT |
|---|---|---|---|---|
| NC | 0.34±0.02 | 0.49±0.02 | 0.43±0.02 | 0.47±0.00 |
| MC | 0.10±0.01a | 0.19±0.01a | 0.12±0.00a | 0.37±0.01a |
| LBP | 0.20±0.01c | 0.27±0.04c | 0.27±0.02c | 0.42±0.01c |
| inhibitor-NC+LBP | 0.20±0.01c | 0.28±0.03c | 0.28±0.03c | 0.43±0.01c |
| inhibitor+LBP | 0.29±0.00cei | 0.41±0.03cei | 0.40±0.02cei | 0.46±0.01cei |
| mimic-NC+LBP | 0.21±0.01c | 0.29±0.03c | 0.27±0.03c | 0.42±0.01c |
| mimic+LBP | 0.14±0.01cej | 0.21±0.01fj | 0.14±0.01ej | 0.38±0.01ej |
Tab.12 Effect of miR-23a overexpression and knockdown on LBP-mediated regulation of PI3K/AKT signaling pathway in KGN cells (n=3, Mean±SD)
| Group | p-PI3K | PI3K | p-AKT | AKT |
|---|---|---|---|---|
| NC | 0.34±0.02 | 0.49±0.02 | 0.43±0.02 | 0.47±0.00 |
| MC | 0.10±0.01a | 0.19±0.01a | 0.12±0.00a | 0.37±0.01a |
| LBP | 0.20±0.01c | 0.27±0.04c | 0.27±0.02c | 0.42±0.01c |
| inhibitor-NC+LBP | 0.20±0.01c | 0.28±0.03c | 0.28±0.03c | 0.43±0.01c |
| inhibitor+LBP | 0.29±0.00cei | 0.41±0.03cei | 0.40±0.02cei | 0.46±0.01cei |
| mimic-NC+LBP | 0.21±0.01c | 0.29±0.03c | 0.27±0.03c | 0.42±0.01c |
| mimic+LBP | 0.14±0.01cej | 0.21±0.01fj | 0.14±0.01ej | 0.38±0.01ej |
| Group | Bax | Caspase-3 | Bcl-2 |
|---|---|---|---|
| NC | 0.15±0.01 | 0.10±0.03 | 0.50±0.01 |
| MC | 0.43±0.02a | 0.45±0.01a | 0.17±0.01a |
| LBP | 0.30±0.02c | 0.25±0.03c | 0.30±0.01c |
| inhibitor-NC+LBP | 0.30±0.02c | 0.22±0.03c | 0.30±0.01c |
| inhibitor+LBP | 0.19±0.02cei | 0.14±0.04cei | 0.45±0.01cei |
| mimic-NC+LBP | 0.32±0.02c | 0.25±0.01c | 0.32±0.02c |
| mimic+LBP | 0.40±0.03ej | 0.41±0.03ej | 0.24±0.02cej |
Tab.13 Effect of miR-23a overexpression and knockdown on LBP-mediated regulation of apoptosis-related protein expressions in KGN cells (n=3, Mean±SD)
| Group | Bax | Caspase-3 | Bcl-2 |
|---|---|---|---|
| NC | 0.15±0.01 | 0.10±0.03 | 0.50±0.01 |
| MC | 0.43±0.02a | 0.45±0.01a | 0.17±0.01a |
| LBP | 0.30±0.02c | 0.25±0.03c | 0.30±0.01c |
| inhibitor-NC+LBP | 0.30±0.02c | 0.22±0.03c | 0.30±0.01c |
| inhibitor+LBP | 0.19±0.02cei | 0.14±0.04cei | 0.45±0.01cei |
| mimic-NC+LBP | 0.32±0.02c | 0.25±0.01c | 0.32±0.02c |
| mimic+LBP | 0.40±0.03ej | 0.41±0.03ej | 0.24±0.02cej |
| [1] | 谢 文, 陈华国, 赵 超, 等. 枸杞多糖的生物活性及作用机制研究进展[J]. 食品科学, 2021, 42(5): 349-59. |
| [2] | 朱文渊, 杜彦芳. 归肾丸对卵巢储备功能减退小鼠模型卵巢自噬的影响[J]. 河北中医药学报, 2023, 38(4): 11-5. |
| [3] | 邵芷若, 关永格. 基于网络药理学探讨归肾丸治疗卵巢早衰的作用机制[J]. 中药新药与临床药理, 2020, 31(11): 1332-42. |
| [4] | 阳松威, 孙晓峰, 贺又舜, 等. 左归丸对化疗致卵巢早衰小鼠卵巢功能的影响[J]. 中成药, 2016, 38(4): 717-22. |
| [5] | 李 兰, 钟达源, 杨开锋, 等. 基于名医验案探讨卵巢早衰用药规律[J]. 中国医药导报, 2020, 17(30): 165-8. |
| [6] | 刘柳青, 刘雁峰, 王悦竹, 等. 卵巢储备功能下降中医证型特点及用药规律文献挖掘研究[J]. 中国中医药信息杂志, 2021, 28(6): 33-8. |
| [7] | 刘柳青, 刘雁峰, 王悦竹, 等. 基于数据挖掘浅析刘雁峰治疗卵巢储备功能下降经验[J]. 中国临床保健杂志, 2021, 24(1): 54-8. |
| [8] | 刘柳青, 刘雁峰, 王悦竹, 等. 补肾调肝方对卵巢储备功能下降合并慢性心理应激大鼠卵巢功能的影响及机制研究[J]. 中华中医药杂志, 2022, 37(8): 4459-65. |
| [9] | 孙慧霞, 郭 哲, 许 静. 枸杞多糖对顺铂化疗诱导的大鼠卵巢早衰模型的卵巢保护作用[J]. 临床与病理杂志, 2020, 40(3): 578-84. |
| [10] | 黄 恬, 郑晓霞, 邱小华, 等. 枸杞多糖对自身免疫性卵巢早衰模型小鼠的保护作用[J]. 药学研究, 2014, 33(8): 437-40. |
| [11] | 韦 敏, 郑生智, 马 红, 等. 枸杞多糖对自然衰老雌性大鼠卵巢保护作用机制的探讨[J]. 中药材, 2011, 34(12): 1915-8. |
| [12] | 江 银, 王 徽, 于 潇, 等. 枸杞多糖调控AMPK/Sirt自噬途径延缓D-gal诱导的卵巢早衰的机制研究[J]. 中国中药杂志, 2022, 47(22): 6175-82. |
| [13] | 楚玉凤, 王 静, 王 彤, 等. 枸杞多糖减轻雷公藤多苷致卵巢颗粒细胞损伤的研究[J]. 宁夏医科大学学报, 2022, 44(5): 466-71. |
| [14] | 刘晓丹, 凌 晨, 刘 璐, 等. 枸杞糖肽激活CAMKK2/AMPK/MCU信号通路改善大鼠卵巢颗粒细胞衰老[J]. 中国药理学通报, 2025, 41(6): 1116-25. |
| [15] | 王恒泉, 柴 茹, 周 健, 等. 枸杞多糖对2, 4-二氯苯氧乙酸所致雌性大鼠生殖系统损伤的保护作用[J]. 环境与职业医学, 2021, 38(11): 1270-7. |
| [16] | Liu LQ, Fang YY. The role of ovarian granulosa cells related-ncRNAs in ovarian dysfunctions: mechanism research and clinical exploration[J]. Reprod Sci, 2025, 32(7): 2098-120. doi:10.1007/s43032-025-01854-2 |
| [17] | Yang X, Zhou Y, Peng S, et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis[J]. Reproduction, 2012, 144(2): 235-44. doi:10.1530/rep-11-0371 |
| [18] | Zhang L, Mao B, Zhao X, et al. Translation regulatory long non-coding RNA 1 (TRERNA1) sponges microRNA-23a to suppress granulosa cell apoptosis in premature ovarian failure[J]. Bioengineered, 2022, 13(2): 2173-80. doi:10.1080/21655979.2021.2023802 |
| [19] | Luo HN, Han Y, Liu J, et al. Identification of microRNAs in granulosa cells from patients with different levels of ovarian reserve function and the potential regulatory function of miR-23a in granulosa cell apoptosis[J]. Gene, 2019, 686: 250-60. doi:10.1016/j.gene.2018.11.025 |
| [20] | Nie M, Yu S, Peng S, et al. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5[J]. Biol Reprod, 2015, 93(4): 98. doi:10.1095/biolreprod.115.130690 |
| [21] | Pastore LM, Christianson MS, Stelling J, et al. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR[J]. J Assist Reprod Genet, 2018, 35(1): 17-23. doi:10.1007/s10815-017-1058-4 |
| [22] | Zhou W, Chen A, Ye Y, et al. LIPUS combined with TFSC alleviates premature ovarian failure by promoting autophagy and inhibiting apoptosis[J]. Gynecol Endocrinol, 2023, 39(1): 2258422. doi:10.1080/09513590.2023.2258422 |
| [23] | 任 佳, 常博雅, 崔梦洁, 等. “秩边” 透“水道” 对卵巢低反应小鼠卵巢组织内/外源性凋亡相关因子表达的影响[J]. 针刺研究, 2025, 50(2): 123-30, 140. |
| [24] | Yan J, Zhang X, Zhu K, et al. Sleep deprivation causes gut dysbiosis impacting on systemic metabolomics leading to premature ovarian insufficiency in adolescent mice[J]. Theranostics, 2024, 14(9): 3760-76. doi:10.7150/thno.95197 |
| [25] | Zhao ZY, Fan QG, Zhu QY, et al. Decreased fatty acids induced granulosa cell apoptosis in patients with diminished ovarian reserve[J]. J Assist Reprod Genet, 2022, 39(5): 1105-14. doi:10.1007/s10815-022-02462-8 |
| [26] | Telfer EE, Grosbois J, Odey YL, et al. Making a good egg: human oocyte health, aging, and in vitro development[J]. Physiol Rev, 2023, 103(4): 2623-77. doi:10.1152/physrev.00032.2022 |
| [27] | D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-92. doi:10.1002/cbin.11137 |
| [28] | Manabe N, Goto Y, Matsuda-Minehata F, et al. Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia[J]. J Reprod Dev, 2004, 50(5): 493-514. doi:10.1262/jrd.50.493 |
| [29] | Regan SLP, Knight PG, Yovich JL, et al. Granulosa cell apoptosis in the ovarian follicle-a changing view[J]. Front Endocrinol: Lausanne, 2018, 9: 61. doi:10.3389/fendo.2018.00061 |
| [30] | Tu J, Cheung AH, Chan CL, et al. The role of microRNAs in ovarian granulosa cells in health and disease[J]. Front Endocrinol: Lausanne, 2019, 10: 174. doi:10.3389/fendo.2019.00174 |
| [31] | Luo JL, Sun ZG. microRNAs in POI, DOR and POR[J]. Arch Gynecol Obstet, 2023, 308(5): 1419-30. doi:10.1007/s00404-023-06922-z |
| [32] | Wang S, Lin S, Zhu M, et al. Acupuncture reduces apoptosis of granulosa cells in rats with premature ovarian failure via restoring the PI3K/Akt signaling pathway[J]. Int J Mol Sci, 2019, 20(24): E6311. doi:10.3390/ijms20246311 |
| [1] | Lu RAO, Jiahe DING, Jiangping WEI, Yong YANG, Xiaomei ZHANG, Jirui WANG. Flos Sophorae improves psoriasis in mice by inhibiting the PI3K/AKT pathway [J]. Journal of Southern Medical University, 2025, 45(9): 1989-1996. |
| [2] | Haonan¹ XU, Fang³ ZHANG, Yuying² HUANG, Qisheng⁴ YAO, Yueqin⁴ GUAN, Hao CHEN. Thesium chinense Turcz. alleviates antibiotic-associated diarrhea in mice by modulating gut microbiota structure and regulating the EGFR/PI3K/Akt signaling pathway [J]. Journal of Southern Medical University, 2025, 45(2): 285-295. |
| [3] | Yuejiao PEI, Huimin LIU, Yu XIN, Bo LIU. High expression of miR-124 improves cognitive function of sleep-deprived rats by modulating the PI3K/AKT signaling pathway [J]. Journal of Southern Medical University, 2025, 45(2): 340-346. |
| [4] | Yuan MI, Xuzhe LI, Zhanpeng WANG, Yanjie LIU, Chuntao SONG, Lantao WANG, Lei WANG. LINC00261 suppresses esophageal squamous cell carcinoma proliferation, invasion, and metastasis by targeting the miR-23a-3p/ZNF292 axis [J]. Journal of Southern Medical University, 2025, 45(10): 2118-2125. |
| [5] | Keni¹ ZHANG, Tong¹ QIAO, Lin¹ YIN, Ju HUANG, Zhijun GENG, Lugen³ ZUO, Jianguo HU, Jing LI. Pinostrobin targets the PI3K/AKT/CCL2 axis in intestinal epithelial cells to inhibit intestinal macrophage infiltration and alleviate dextran sulfate sodium-induced colitis in mice [J]. Journal of Southern Medical University, 2025, 45(10): 2199-2209. |
| [6] | Yuru ZHANG, Lei WAN, Haoxiang FANG, Fangze LI, Liwen WANG, Kefei LI, Peiwen YAN, Hui JIANG. Inhibiting miR-155-5p promotes proliferation of human submandibular gland epithelial cells in primary Sjogren's syndrome by negatively regulating the PI3K/AKT signaling pathway via PIK3R1 [J]. Journal of Southern Medical University, 2025, 45(1): 65-71. |
| [7] | Xianheng ZHANG, Jian LIU, Qi HAN, Yiming CHEN, Xiang DING, Xiaolu CHEN. Huangqin Qingrechubi Capsule alleviates inflammation and uric acid and lipid metabolism imbalance in rats with gouty arthritis by inhibiting the PTEN/PI3K/AKT signaling pathway [J]. Journal of Southern Medical University, 2024, 44(8): 1450-1458. |
| [8] | Shuo LIU, Jing LI, Xingwang WU. Swertiamarin ameliorates 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice by inhibiting intestinal epithelial cell apoptosis [J]. Journal of Southern Medical University, 2024, 44(8): 1545-1552. |
| [9] | Shan XIANG, Zongxing ZHANG, Lu JIANG, Daozhong LIU, Weiyi LI, Zhuoma BAO, Rui TIAN, Dan CHENG, Lin YUAN. Tujia medicine Toddalia asiatica improves synovial pannus in rats with collagen-induced arthritis through the PI3K/Akt signaling pathway [J]. Journal of Southern Medical University, 2024, 44(8): 1582-1588. |
| [10] | Yuanyuan WANG, Teng CHEN, Xiaofan CONG, Yiran LI, Rui CHEN, Pei ZHANG, Xiaojin SUN, Surong ZHAO. Pristimerin enhances cisplatin-induced apoptosis in nasopharyngeal carcinoma cells via ROS-mediated deactivation of the PI3K/AKT signaling pathway [J]. Journal of Southern Medical University, 2024, 44(5): 904-912. |
| [11] | DUAN Ting, ZHANG Zhen, SHI Jinran, XIAO Linyu, YANG Jingjing, YIN Lixia, ZHANG Xiaofeng, GENG Zhijun, LU Guoyu. High expression of CPNE3 correlates with poor long-term prognosis of gastric cancer by inhibiting cell apoptosis via activating PI3K/AKT signaling [J]. Journal of Southern Medical University, 2024, 44(1): 129-137. |
| [12] | ZHENG Qingwei, SHAO Yidan, ZHENG Wanting, ZOU Yingxue. Cordycepin, a metabolite of Cordyceps militaris, inhibits xenograft tumor growth of tongue squamous cell carcinoma in nude mice [J]. Journal of Southern Medical University, 2023, 43(6): 873-878. |
| [13] | LIU Fang, PENG Lanzhu, XI Jingle. High expression of MYH9 inhibits apoptosis of non-small cell lung cancer cells through activating the AKT/c-Myc pathway [J]. Journal of Southern Medical University, 2023, 43(4): 527-536. |
| [14] | WU Jiaming, DENG Zhongquan, ZHU Yi, DOU Guangjian, LI Jin, HUANG Liyong. Overexpression of miR-431-5p impairs mitochondrial function and induces apoptosis in gastric cancer cells via the Bax/Bcl-2/caspase3 pathway [J]. Journal of Southern Medical University, 2023, 43(4): 537-543. |
| [15] | GAO Xiaoyang, ZHAO Xiaolu, ZHANG Chunyan, YAN Yuxin, JIN Rong, MA Yuehong. Quercetin induces hepatic stellate cell apoptosis by inhibiting the PI3K/Akt signaling pathway via upregulating miR-146 [J]. Journal of Southern Medical University, 2023, 43(10): 1725-1733. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||