Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (11): 2309-2319.doi: 10.12122/j.issn.1673-4254.2025.11.03
Yiliu CHEN1(
), Min MA1(
), Ran SU1, Yinbin ZHU1, Qing FENG1, Jiali LUO1, Weifeng FENG2(
), Xianxin YAN1(
)
Received:2025-06-26
Online:2025-11-20
Published:2025-11-28
Contact:
Weifeng FENG, Xianxin YAN
E-mail:cyl9708@163.com;tmamin@jnu.edu.cn;fwf2000ok@sina.com;871655006@qq.com
Supported by:Yiliu CHEN, Min MA, Ran SU, Yinbin ZHU, Qing FENG, Jiali LUO, Weifeng FENG, Xianxin YAN. Lichong Xiaozheng Granules enhances cisplatin sensitivity of ovarian cancer xenografts in rats by regulating adenine nucleotide translocator 3-mediated mitochondrial apoptosis[J]. Journal of Southern Medical University, 2025, 45(11): 2309-2319.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.11.03
Fig.1 HPLC-UV fingerprints and mass spectrometric analysis of Lichong Xiaozheng Granules (LCXZ). A, B: HPLC-UV fingerprint of LCXZ at 210 nm and 254 nm, respectively. C: High-resolution mass spectrometric fragmentation pathway of paeoniflorin.
| No. | Mass-to-charge ratio (m/z) | Formula | Mass Error (ppm) | Retention time (min) |
|---|---|---|---|---|
| M0001 | 387.1132 | C12H22O11 | -3.69 | 0.89 |
| M0002 | 170.0210 | C7H6O5 | -3.02 | 1.87 |
| M0003 | 329.0869 | C14H18O9 | -2.67 | 3.13 |
| M0004 | 183.0293 | C8H8O5 | -3.03 | 3.90 |
| M0005 | 356.1097 | C16H20O9 | -2.96 | 4.04 |
| M0006 | 496.1569 | C23H28O12 | -2.36 | 4.15 |
| M0007 | 457.1572 | C20H27NO11 | -2.76 | 4.29 |
| M0008 | 431.1910 | C19H30O8 | -3.31 | 4.51 |
| M0009 | 481.1692 | C23H28O11 | -2.65 | 4.62 |
| M0010 | 295.1044 | C14H17NO6 | -4.10 | 4.67 |
| M0011 | 480.1618 | C23H28O11 | -2.89 | 4.71 |
| M0012 | 446.1200 | C22H22O10 | -2.88 | 4.88 |
| M0013 | 428.1671 | C20H28O10 | -2.70 | 4.97 |
| M0014 | 580.2141 | C28H36O13 | -2.51 | 5.12 |
| M0015 | 433.1130 | C21H22O10 | -2.46 | 5.25 |
| M0016 | 463.1221 | C22H22O11 | -3.07 | 5.26 |
| M0017 | 441.1756 | C20H28O8 | -2.57 | 5.41 |
| M0018 | 507.1491 | C23H26O10 | -3.62 | 5.58 |
| M0019 | 161.0593 | C10H10O3 | -2.29 | 5.71 |
| M0020 | 507.1493 | C23H26O10 | -3.22 | 5.90 |
Tab.1 Information on the top 20 compounds of Lichong Xiaozheng Granules (LCXZ) detected in medicated mouse serum
| No. | Mass-to-charge ratio (m/z) | Formula | Mass Error (ppm) | Retention time (min) |
|---|---|---|---|---|
| M0001 | 387.1132 | C12H22O11 | -3.69 | 0.89 |
| M0002 | 170.0210 | C7H6O5 | -3.02 | 1.87 |
| M0003 | 329.0869 | C14H18O9 | -2.67 | 3.13 |
| M0004 | 183.0293 | C8H8O5 | -3.03 | 3.90 |
| M0005 | 356.1097 | C16H20O9 | -2.96 | 4.04 |
| M0006 | 496.1569 | C23H28O12 | -2.36 | 4.15 |
| M0007 | 457.1572 | C20H27NO11 | -2.76 | 4.29 |
| M0008 | 431.1910 | C19H30O8 | -3.31 | 4.51 |
| M0009 | 481.1692 | C23H28O11 | -2.65 | 4.62 |
| M0010 | 295.1044 | C14H17NO6 | -4.10 | 4.67 |
| M0011 | 480.1618 | C23H28O11 | -2.89 | 4.71 |
| M0012 | 446.1200 | C22H22O10 | -2.88 | 4.88 |
| M0013 | 428.1671 | C20H28O10 | -2.70 | 4.97 |
| M0014 | 580.2141 | C28H36O13 | -2.51 | 5.12 |
| M0015 | 433.1130 | C21H22O10 | -2.46 | 5.25 |
| M0016 | 463.1221 | C22H22O11 | -3.07 | 5.26 |
| M0017 | 441.1756 | C20H28O8 | -2.57 | 5.41 |
| M0018 | 507.1491 | C23H26O10 | -3.62 | 5.58 |
| M0019 | 161.0593 | C10H10O3 | -2.29 | 5.71 |
| M0020 | 507.1493 | C23H26O10 | -3.22 | 5.90 |
Fig.2 LCXZ synergizes with cisplatin to inhibit ovarian cancer proliferation in nude mice. A: Measurement of tumor volume in the mice. B: Gross observation of the dissected tumors. C: Measurement of tumor weight. D: HE/Ki67 staining of the tumors,Arrows indicate widened intercellular spaces (Original magnification: ×400). *P<0.05 vs Tumor group, #P<0.05 vs DDP group (n=8).
Fig.3 LCXZ alleviates the toxic effect of cisplatin. A: Body weight changes of the tumor-bearing mice. B: Gross observation of the spleen of the mice. C: HE staining of renal tissues of the mice (×400). D: SOD content in the kidneys of the mice. *P<0.05, **P<0.01 vs Tumor group; #P<0.05 vs DDP group (n=8).
Fig.4 Transcriptomic analysis of therapeutic targets of LCXZ combined with cisplatin. A: Principal component analysis. B: Volcano plot of the differential genes of DDP vs Tumor. C: Volcano plot of the differential genes of DDP_LCXZ vs Tumor. D: Volcano plot of the differential genes of DDP_LCXZ vs DDP. E: Venn diagram of the differential genes.
Fig.5 KEGG enrichment analysis of the therapeutic targets of LCXZ combined with cisplatin. A: KEGG enrichment analysis of DDP vs Tumor. B: KEGG enrichment analysis of DDP_LCXZ vs Tumor. C: KEGG enrichment analysis of DDP_LCXZ vs DDP
Fig.6 Molecular docking of the main constituents of LCXZ. A: Paeoniflorin-ANT3 docking. B: L-amygdalin-ANT3 docking. C: Turanose-ANT3 docking. D: Benzoyl paeoniflorin-ANT3 docking.
Fig.7 LCXZ combined with cisplatin causes excessive opening of the mitochondrial pores in the tumor cells.( Left: scale bar=2 μm; Right: scale bar=1 μm. Labels: N:nucleus; M: mitochondria; ER:endoplasmic reticulum; ASS: autophagolysosomal structure).
Fig.8 LCXZ -mediated mitochondrial apoptosis pathway sensitizes cisplatin. A: Representitative protein bands in Westen blotting. B-F: Relative protein expression levels of ANT3, BAX, cleaved caspase-3, cleaved caspase-9 and BCL-2, respectively. *P<0.05, **P<0.01 vs Tumor group (n=3).
| [1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49. doi:10.3322/caac.21660 |
| [2] | Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015[J]. CA A Cancer J Clinicians, 2016, 66(2): 115-32. doi:10.3322/caac.21338 |
| [3] | Chen ZW, Shan JJ, Chen M, et al. Targeting GPX4 to induce ferroptosis overcomes chemoresistance mediated by the PAX8-AS1/GPX4 axis in intrahepatic cholangiocarcinoma[J]. Adv Sci (Weinh), 2025, 12(30): e01042. doi:10.1002/advs.202501042 |
| [4] | He ZK, Lian ZY, Wu JN, et al. PFKFB3 confers cisplatin resistance in gastric cancer by inhibiting ferroptosis through SLC7A11/xCT dephosphorylation[J]. Int Immunopharmacol, 2025, 159: 114914. doi:10.1016/j.intimp.2025.114914 |
| [5] | Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action[J]. Eur J Pharmacol, 2014, 740: 364-78. doi:10.1016/j.ejphar.2014.07.025 |
| [6] | Dibitetto D, Widmer CA, Rottenberg S. PARPi, BRCA, and gaps: controversies and future research[J]. Trends Cancer, 2024, 10(9): 857-69. doi:10.1016/j.trecan.2024.06.008 |
| [7] | Crocetto F, Ferro M, Buonerba C, et al. Comparing cardiovascular adverse events in cancer patients: a meta-analysis of combination therapy with angiogenesis inhibitors and immune checkpoint inhibitors versus angiogenesis inhibitors alone[J]. Crit Rev Oncol Hematol, 2023, 188: 104059. doi:10.1016/j.critrevonc.2023.104059 |
| [8] | Sahoo D, Deb P, Basu T, et al. Advancements in platinum-based anticancer drug development: a comprehensive review of strategies, discoveries, and future perspectives[J]. Bioorg Med Chem, 2024, 112: 117894. doi:10.1016/j.bmc.2024.117894 |
| [9] | Frigo E, Tommasin L, Lippe G, et al. The haves and have-nots: the mitochondrial permeability transition pore across species[J]. Cells, 2023, 12(10): 1409. doi:10.3390/cells12101409 |
| [10] | Shen X, Ma M, Mi R, et al. EFHD1 promotes osteosarcoma proliferation and drug resistance by inhibiting the opening of the mitochondrial membrane permeability transition pore (mPTP) by binding to ANT3[J]. Cell Mol Life Sci, 2024, 81(1): 236. doi:10.1007/s00018-024-05254-8 |
| [11] | Zhao L, Tang M, Bode AM, et al. ANTs and cancer: Emerging pathogenesis, mechanisms, and perspectives[J]. Biochim Biophys Acta BBA Rev Cancer, 2021, 1875(1): 188485. doi:10.1016/j.bbcan.2020.188485 |
| [12] | Ji XZ, Chu LJ, Su D, et al. MRPL12-ANT3 interaction involves in acute kidney injury via regulating MPTP of tubular epithelial cells[J]. iScience, 2023, 26(5): 106656. doi:10.1016/j.isci.2023.106656 |
| [13] | Zhang JY, Wang M, Wang RY, et al. Salvianolic acid A ameliorates arsenic trioxide-induced cardiotoxicity through decreasing cardiac mitochondrial injury and promotes its anticancer activity[J]. Front Pharmacol, 2018, 9: 487. doi:10.3389/fphar.2018.00487 |
| [14] | Feng AJ, Xu JK, Fu Y, et al. An integrative pharmacology-based study on the efficacy and mechanism of essential oil of Chaihu Guizhi Decoction on influenza A virus induced pneumonia in mice[J]. J Ethnopharmacol, 2025, 336: 118654. doi:10.1016/j.jep.2024.118654 |
| [15] | Wu L, Shen HY, Wu YZ, et al. Pharmacodynamics and potential synergistic effects of Mai-Luo-Ning injection on cardiovascular protection, based on molecular docking[J]. Chin J Nat Med, 2015, 13(11): 815-22. doi:10.1016/s1875-5364(15)30085-6 |
| [16] | 黎卓涵, 王艳萍, 蔡娱飞. 中医药治疗卵巢癌及并发症的优势分析[J]. 吉林中医药, 2022, 42(12): 1469-72. |
| [17] | Chen YL, Su R, Hu YG, et al. The active components and potential mechanisms of Li-Chong-Xiao-Zhen granules in the treatment of ovarian cancer: an integrated metabolomics, proteomics, network pharmacology and experimental validation[J]. J Ethnopharmacol, 2025, 343: 119474. doi:10.1016/j.jep.2025.119474 |
| [18] | Chen Y, Ma S, Pi D, et al. Luteolin induces pyroptosis in HT-29 cells by activating the Caspase1/Gasdermin D signalling pathway[J]. Front Pharmacol, 2022, 13: 952587. doi:10.3389/fphar.2022.952587 |
| [19] | Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine[J]. CA Cancer J Clin, 2019, 69(4): 280-304. doi:10.3322/caac.21559 |
| [20] | Lai K, Chen Z, Lin S, et al. The IDH1-R132H mutation aggravates cisplatin-induced acute kidney injury by promoting ferroptosis through disrupting NDUFA1 and FSP1 interaction[J]. Cell Death Differ, 2025, 32(2): 242-55. doi:10.1038/s41418-024-01381-8 |
| [21] | Tang CY, Livingston MJ, Safirstein R, et al. Cisplatin nephrotoxicity: new insights and therapeutic implications[J]. Nat Rev Nephrol, 2023, 19(1): 53-72. doi:10.1038/s41581-022-00631-7 |
| [22] | Matulonis UA, Sood AK, Fallowfield L, et al. Ovarian cancer[J]. Nat Rev Dis Primers, 2016, 2: 16061. doi:10.1038/nrdp.2016.61 |
| [23] | Colombo N, Sessa C, du Bois A, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease[J]. Ann Oncol, 2019, 30(5): 672-705. doi:10.1093/annonc/mdz062 |
| [24] | 杨才志, 黄仲羽, 林洁涛, 等. 林丽珠治疗卵巢癌用药规律探讨[J]. 广州中医药大学学报, 2019, 36(12): 2027-33. |
| [25] | 杨鹤年, 张津铖, 吴宿慧, 等. 中药配方颗粒制备工艺、质量评价、与传统汤剂一致性的研究现状分析[J]. 中国实验方剂学杂志, 2023, 29(8): 266-74. |
| [26] | Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78: 129-41. doi:10.1016/j.yjmcc.2014.08.018 |
| [27] | Pan TH, Yang B, Yao S, et al. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: a comprehensive review[J]. Life Sci, 2024, 351: 122802. doi:10.1016/j.lfs.2024.122802 |
| [28] | Liu G, Wang ZK, Wang ZY, et al. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead[J]. Arch Toxicol, 2016, 90(5): 1193-209. doi:10.1007/s00204-015-1547-0 |
| [29] | Kairys V, Baranauskiene L, Kazlauskiene M, et al. Recent advances in computational and experimental protein-ligand affinity determination techniques[J]. Expert Opin Drug Discov, 2024, 19(6): 649-70. doi:10.1080/17460441.2024.2349169 |
| [30] | Lai H, Wang LY, Qian RY, et al. Interformer: an interaction-aware model for protein-ligand docking and affinity prediction[J]. Nat Commun, 2024, 15: 10223. doi:10.1038/s41467-024-54440-6 |
| [31] | Genin EC, Plutino M, Bannwarth S, et al. CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis[J]. EMBO Mol Med, 2016, 8(1): 58-72. doi:10.15252/emmm.201505496 |
| [32] | Martin-Solana E, Casado-Zueras L, Torres TE, et al. Disruption of the mitochondrial network in a mouse model of Huntington's disease visualized by in-tissue multiscale 3D electron microscopy[J]. Acta Neuropathol Commun, 2024, 12(1): 88. doi:10.1186/s40478-024-01802-2 |
| [33] | Li ZF, Feng JK, Zhao XC, et al. The extract of Pinellia ternata-induced apoptosis of leukemia cells by regulating the expression of bax, bcl-2 and caspase-3 protein expression in mice[J]. Transplant Proc, 2023, 55(9): 2232-40. doi:10.1016/j.transproceed.2023.08.015 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||