[1] |
陆海霞, 陶丹英, 卢展民, 等. 第四次全国口腔健康流行病学调查-背景和方法[C]//2018年中华口腔医学会第十八次口腔预防医学学术年会论文汇编. 西安, 2018: 23..
|
[2] |
Tandon D, Rajawat J. Present and future of artificial intelligence in dentistry[J]. J Oral Biol Craniofac Res, 2020, 10(4): 391-6. doi:10.1016/j.jobcr.2020.07.015
|
[3] |
刘 曼, 孟 耀, 何 勇, 等. 口腔全景片评价更年期妇女骨质疏松的研究[J]. 国际口腔医学杂志, 2017, 44(2): 165-9. doi:10.7518/gjkq.2017.02.010
|
[4] |
张丽娟. 数字化全景片口腔科应用价值分析[J]. 影像研究与医学应用, 2020, 4(5): 42-3.
|
[5] |
李惠玲. 口腔全景片在阻生齿拔除术中的应用价值[J]. 现代预防医学, 2012, 39(17): 4566-7.
|
[6] |
Oliveira W, Albuquerque Santos M, Burgardt CAP, et al. Estimation of human age using machine learning on panoramic radiographs for Brazilian patients[J]. Sci Rep, 2024, 14(1): 19689. doi:10.1038/s41598-024-70621-1
|
[7] |
Lin ZT, Zhou CC, Hu ZY, et al. Expert consensus on imaging diagnosis and analysis of early correction of childhood malocclusion[J]. Int J Oral Sci, 2025, 17(1): 21. doi:10.1038/s41368-025-00351-1
|
[8] |
张 利, 李生娇, 施 雄, 等. 口腔全景片图像质量影响因素分析[J]. 口腔颌面外科杂志, 2018, 28(4): 225-8.
|
[9] |
王晓艳, 张铁军, 任文革, 等. 影响口腔全景片摄影图像质量因素的探讨[C]//第14次全国口腔颌面医学影像学专题研讨会暨国家级口腔颌面医学影像学新进展学习班论文汇编. 长春, 2016: 106.
|
[10] |
Mühlbacher AC, Juhnke C. Patient preferences versus physicians' judgement: does it make a difference in healthcare decision making?[J]. Appl Health Econ Health Policy, 2013, 11(3): 163-80. doi:10.1007/s40258-013-0023-3
|
[11] |
吴志力, 吴 宇. 目标检测集成框架在医学图像AI辅助分析中的应用[J]. 人工智能, 2018, 5(4): 38-50.
|
[12] |
Maganur PC, Vishwanathaiah S, Mashyakhy M, et al. Development of artificial intelligence models for tooth numbering and detection: a systematic review[J]. Int Dent J, 2024, 74(5): 917-29. doi:10.1016/j.identj.2024.04.021
|
[13] |
Yu HJ, Cao Z, Pang GZ, et al. A deep-learning system for diagnosing ectopic eruption[J]. J Dent, 2025, 152: 105399. doi:10.1016/j.jdent.2024.105399
|
[14] |
Jin L, Tang Y, Zhou WY, et al. Detection of three-rooted mandibular first molars on panoramic radiographs using deep learning[J]. Sci Rep, 2024, 14(1): 30392. doi:10.1038/s41598-024-82378-8
|
[15] |
Yoon K, Jeong HM, Kim JW, et al. AI-based dental caries and tooth number detection[J]. Int Dent J, 2024, 74: S213-4. doi:10.1016/j.identj.2024.07.037
|
[16] |
Ying SN, Huang F, Shen XT, et al. Performance comparison of multifarious deep networks on caries detection with tooth X-ray images[J]. J Dent, 2024, 144: 104970. doi:10.1016/j.jdent.2024.104970
|
[17] |
Bayati M, Alizadeh Savareh B, Ahmadinejad H, et al. Advanced AI-driven detection of interproximal caries in bitewing radiographs using YOLOv8[J]. Sci Rep, 2025, 15(1): 4641. doi:10.1038/s41598-024-84737-x
|
[18] |
Zhao XT, Xu TK, Peng L, et al. Recognition and segmentation of teeth and mandibular nerve canals in panoramic dental X-rays by Mask RCNN[J]. Displays, 2023, 78: 102447. doi:10.1016/j.displa.2023.102447
|
[19] |
Mărginean AC, Mureşanu S, Hedeşiu M, et al. Teeth segmentation and carious lesions segmentation in panoramic X-ray images using CariSeg, a networks' ensemble[J]. Heliyon, 2024, 10(10): e30836. doi:10.1016/j.heliyon.2024.e30836
|
[20] |
孙召飞, 俞经虎, 朱行飞, 等. 基于改进YOLOv5s的口腔全景片牙齿病症识别算法[J]. 中国激光, 2024, 51(15): 1507106.
|
[21] |
Wang QM, Zhu XF, Sun ZF, et al. Optimized Yolov8 feature fusion algorithm for dental disease detection[J]. Comput Biol Med, 2025, 187: 109778. doi:10.1016/j.compbiomed.2025.109778
|
[22] |
Mendes AC, Pontes Quintanilha DB, Pinto Pessoa AC, et al. Automated tooth detection and numbering in panoramic radiographs using YOLO[J]. Procedia Comput Sci, 2025, 256: 1318-25. doi:10.1016/j.procs.2025.02.244
|
[23] |
Khanam R, Hussain M.YOLOv11: An Overview of the Key Architectural Enhancements[J]. arXiv, .arXiv:2410.17725v1
|
[24] |
Choi E, Pang KM, Jeong E, et al. Artificial intelligence in diagnosing dens evaginatus on periapical radiography with limited data availability[J]. Sci Rep, 2023, 13(1): 13232. doi:10.1038/s41598-023-40472-3
|
[25] |
Zhao YA, Lv WY, Xu SL, et al. DETRs beat YOLOs on real-time object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 16-22, 2024, Seattle, WA, USA. IEEE, 2024: 16965-74. doi:10.1109/cvpr52733.2024.01605
|
[26] |
He KM, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 2980-8. doi:10.1109/iccv.2017.322
|
[27] |
Reis D, Kupec J, Hong J, et al. Real-time flying object detection with YOLOv8[J]. arXiv, arXiv:.
|
[28] |
Wang CY, Yeh IH, Mark Liao HY. YOLOv9: learning what you want to learn using programmable gradient information[M]//Computer Vision-ECCV 2024. Cham: Springer Nature Switzerland, 2024: 1-21. doi:10.1007/978-3-031-72751-1_1
|
[29] |
Hussain M, Khanam R. In-depth review of YOLOv1 to YOLOv10 variants for enhanced photovoltaic defect detection[J]. Solar, 2024, 4(3): 351-86. doi:10.3390/solar4030016
|
[30] |
Li D, Han T, Zhou HT, et al. Lightweight Siamese network for visual tracking via FasterNet and feature adaptive fusion[C]//2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). March 29-31, 2024, Nanjing, China. IEEE, 2024: 1-5. doi:10.1109/ainit61980.2024.10581687
|
[31] |
王 宁, 王汝丽, 沈晓芳, 等. 口腔全景片在多个牙根管治疗中的应用[J]. 临床和实验医学杂志, 2006, 5(12): 1971.
|
[32] |
王曼玲, 孙兴龙, 王伦昌. 数字化全景片在口腔治疗中的应用价值[J]. 中外医学研究, 2013, 11(8): 61-3. doi:10.3969/j.issn.1674-6805.2013.08.044
|
[33] |
Wang B, He B, Li C, et al. Relation-based self-distillation method for 2D object detection[J]. Sci Rep, 2025, 15(1): 9329. doi:10.1038/s41598-025-93072-8
|
[34] |
Suwannaphong T, Jovan F, Craddock I, et al. Optimising TinyML with quantization and distillation of transformer and mamba models for indoor localisation on edge devices[J]. Sci Rep, 2025, 15(1): 10081. doi:10.1038/s41598-025-94205-9
|