[1] |
Voto C, Panetta T. Salvage of suboptimal or occluded arteriovenous fistulas using a 4 French system from the radial artery for initial balloon angioplasty maturations[J]. Cureus, 2021, 13(2): e13446. doi:10.7759/cureus.13446
|
[2] |
金其庄, 王玉柱, 叶朝阳, 等. 中国血液透析用血管通路专家共识(第2版)[J]. 中国血液净化, 2019, 18(6): 365-81.
|
[3] |
Wen MW, Li Z, Li J, et al. Risk factors for primary arteriovenous fistula dysfunction in hemodialysis patients: a retrospective survival analysis in multiple medical centers[J]. Blood Purif, 2019, 48(3): 276-82. doi:10.1159/000500045
|
[4] |
Roetker NS, Guo HF, Ramey DR, et al. Hemodialysis access type and access patency loss: an observational cohort study[J]. Kidney Med, 2022, 5(1): 100567. doi:10.1016/j.xkme.2022.100567
|
[5] |
Ibrahim Eissa HA, Zaida N, Abu-Gruidah H, et al. Percutaneous transluminal angioplasty as a treatment of stenosis of arteriovenous fistula for hemodialysis[J]. Menoufia Med J, 2021, 34(2): 696. doi:10.4103/mmj.mmj_364_20
|
[6] |
Arshi B, Chen JL, Ikram MA, et al. Advanced glycation end-products, cardiac function and heart failure in the general popul-ation: The Rotterdam Study[J]. Diabetologia, 2023, 66(3): 472-81. doi:10.1007/s00125-022-05821-3
|
[7] |
Kato S, Sugawa H, Tabe K, et al. Rapid pretreatment for multi-sample analysis of advanced glycation end products and their role in nephropathy[J]. J Clin Biochem Nutr, 2022, 70(3): 256-61. doi:10.3164/jcbn.21-175
|
[8] |
Du CP, Whiddett RO, Buckle I, et al. Advanced glycation end products and inflammation in type 1 diabetes development[J]. Cells, 2022, 11(21): 3503. doi:10.3390/cells11213503
|
[9] |
Khanam A, Ahmad S, Husain A. A perspective on the impact of advanced glycation end products in the progression of diabetic nephropathy[J]. Curr Protein Pept Sci, 2023, 24(1): 2-6. doi:10.2174/1389203724666221108120715
|
[10] |
Ji XL, Yin M, Deng C, et al. Hemoglobin glycation index among adults with type 1 diabetes: Association with double diabetes features[J]. World J Diabetes, 2025, 16(4): 100917. doi:10.4239/wjd.v16.i4.100917
|
[11] |
Groenen AG, Halmos B, van Zeventer IA, et al. Skin autofluorescence, a measure for accumulation of advanced glycation end products, positively associates with blood neutrophil and monocyte counts in the general population, and particularly in men with prediabetes[J]. Atherosclerosis, 2024, 395: 117609. doi:10.1016/j.atherosclerosis.2024.117609
|
[12] |
Xue LP, Zhang Y, Zhang Q. The relationship between advanced glycation end products, metabolic metrics, HbA1c, and diabetic nephropathy[J]. Front Endocrinol (Lausanne), 2025, 16: 1468737. doi:10.3389/fendo.2025.1468737
|
[13] |
Parwani K, Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy[J]. Arch Physiol Biochem, 2023, 129(1): 95-107. doi:10.1080/13813455.2020.1797106
|
[14] |
Diallo AM, Jaisson S, Barriquand R, et al. Association between the tissue and circulating advanced glycation end-products and the micro- and macrovascular complications in type 1 diabetes: the DIABAGE study[J]. Diabetes Ther, 2022, 13(8): 1531-46. doi:10.1007/s13300-022-01285-1
|
[15] |
Majchrzak C, Cougnard-Gregoire A, Le-Goff M, et al. Skin autofluorescence of Advanced Glycation End-products and mortality in older adults: The roles of chronic kidney disease and diabetes[J]. Nutr Metab Cardiovasc Dis, 2022, 32(11): 2526-33. doi:10.1016/j.numecd.2022.08.009
|
[16] |
Lim K, Kalim S. The role of nonenzymatic post-translational protein modifications in uremic vascular calcification[J]. Adv Chronic Kidney Dis, 2019, 26(6): 427-36. doi:10.1053/j.ackd.2019.10.001
|
[17] |
Steenbeke M, Speeckaert R, Desmedt S, et al. The role of advanced glycation end products and its soluble receptor in kidney diseases[J]. Int J Mol Sci, 2022, 23(7): 3439. doi:10.3390/ijms23073439
|
[18] |
Gutierrez-Mariscal FM, Lopez-Moreno A, Torres-Peña JD, et al. Modulation of circulating levels of advanced glycation end products and its impact on intima-media thickness of both common carotid arteries: CORDIOPREV randomised controlled trial[J]. Cardiovasc Diabetol, 2024, 23(1): 361. doi:10.1186/s12933-024-02451-4
|
[19] |
中国超声医学工程学会颅脑及颈部血管超声专业委员会, 国家卫健委脑卒中防治工程专家委员会血管超声专业委员会, 中国超声医学工程学会浅表器官及外周血管超声专业委员会. 腹部及四肢动脉超声若干常见临床问题专家共识[J].中国超声医学杂志, 2020,36(12):1057-66.
|
[20] |
Zhang LX, Zhao MH, Zuo L, et al. China kidney disease network (CK-NET) 2015 annual data report[J]. Kidney Int Suppl (2011), 2019, 9(1): e1-e81.
|
[21] |
Fuentes NES, Blanco JR, Garcia GQ, et al. A prospective study of factors associated with successful maturation of arteriovenous fistulas for hemodialysis[J]. J Ultrason, 2024, 24(98): 1-7. doi:10.15557/jou.2024.0030
|
[22] |
Vo AT, Nguyen QNH, Le T. Effects of diabetes on the development of arteriovenous fistula during the first 6 weeks[J]. J Vasc Ultrasound, 2024, 48(4): 213-20. doi:10.1177/15443167241298060
|
[23] |
Zhao B, Wang H, Wang YZ, et al. Type 2 diabetes increase the risk of arteriovenous fistula non-maturation, mediated by postoperative vascular hemodynamics[J]. Int Urol Nephrol, 2024, 56(12): 3887-94. doi:10.1007/s11255-024-04150-1
|
[24] |
Wongchadakul P, Lohasammakul S, Rattanadecho P. Comparative analysis of RADAR vs. conventional techniques for AVF maturation in patients with blood viscosity and vessel elasticity-related diseases through fluid-structure interaction modeling: Anemia, hypertension, and diabetes[J]. PLoS One, 2024, 19(1): e0296631. doi:10.1371/journal.pone.0296631
|
[25] |
Maphumulo SC, Pretorius E. Role of circulating microparticles in type 2 diabetes mellitus: implications for pathological clotting[J]. Semin Thromb Hemost, 2022, 48(2): 188-205. doi:10.1055/s-0041-1740150
|
[26] |
Neves M, Outerelo C, Pereira M, et al. Predictive factors of recurrent endovascular intervention for cephalic arch stenosis after percutan-eous transluminal angioplasty[J]. J Vasc Surg, 2018, 68(3): 836-42. doi:10.1016/j.jvs.2017.12.055
|
[27] |
Kato S, Matsumura T, Sugawa H, et al. Correlation between serum advanced glycation end-products and vascular complications in patient with type 2 diabetes[J]. Sci Rep, 2024, 14(1): 18722. doi:10.1038/s41598-024-69822-5
|
[28] |
Pearce C, Islam N, Bryce R, et al. Advanced glycation end products: receptors for advanced glycation end products axis in coronary stent restenosis: a prospective study[J]. Int J Angiol, 2018, 27(4): 213-22. doi:10.1055/s-0038-1676383
|
[29] |
Azamian Y, Abdollahzad H, Rezaeian S, et al. The effect of synbiotic supplementation on plasma levels of advanced glycation end products and cardiovascular risk factors in hemodialysis patients: a double-blind clinical trial[J]. Food Sci Nutr, 2024, 12(9): 6864-72. doi:10.1002/fsn3.4338
|
[30] |
Khanam A, Alouffi S, Alyahyawi AR, et al. Generation of autoantibodies against glycated fibrinogen: role in diabetic nephropathy and retinopathy[J]. Anal Biochem, 2024, 685: 115393. doi:10.1016/j.ab.2023.115393
|
[31] |
Klyosova E, Azarova I, Polonikov A. A polymorphism in the gene encoding heat shock factor 1 (HSF1) increases the risk of type 2 diabetes: a pilot study supports a role for impaired protein folding in disease pathogenesis[J]. Life (Basel), 2022, 12(11): 1936. doi:10.3390/life12111936
|
[32] |
Dincer N, Dagel T, Afsar B, et al. The effect of chronic kidney disease on lipid metabolism[J]. Int Urol Nephrol, 2019, 51(2): 265-77. doi:10.1007/s11255-018-2047-y
|
[33] |
Yilmaz H, Bozkurt A, Cakmak M, et al. Relationship between late arteriovenous fistula (AVF) stenosis and neutrophil-lymphocyte ratio (NLR) in chronic hemodialysis patients[J]. Ren Fail, 2014, 36(9): 1390-4. doi:10.3109/0886022x.2014.945183
|
[34] |
See YP, Cho Y, Pascoe EM, et al. Predictors of arteriovenous fistula failure: a Post hoc analysis of the FAVOURED study[J]. Kidney360, 2020, 1(11): 1259-69. doi:10.34067/kid.0002732020
|
[35] |
Yang X, Zeng JX, Xie KJ, et al. Advanced glycation end product-modified low-density lipoprotein promotes pro-osteogenic reprogramming via RAGE/NF-κB pathway and exaggerates aortic valve calcification in hamsters[J]. Mol Med, 2024, 30(1): 76. doi:10.1186/s10020-024-00833-8
|
[36] |
Chen X, Zhang JW. COL3A1 induces ischemic heart failure by activating AGE/RAGE pathway[J]. Signa vitae,2022,18(6):45-52.
|
[37] |
Chen JJ, Peng H, Chen CJ, et al. NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells[J]. Life Sci, 2022, 311(Pt A): 121142. doi:10.1016/j.lfs.2022.121142
|
[38] |
Burr SD, Dorroh CC, Stewart JA. Rap1a activity elevated the impact of endogenous AGEs in diabetic collagen to stimulate increased myofibroblast transition and oxidative stress[J]. Int J Mol Sci, 2022, 23(9): 4480. doi:10.3390/ijms23094480
|
[39] |
Min F, Li ZR, Li YL, et al. The contribution of adiponectin to diabetic retinopathy progression: Association with the AGEs-RAGE pathway[J]. Heliyon, 2024, 10(17): e36111. doi:10.1016/j.heliyon.2024.e36111
|
[40] |
Stephen SB, Kulanthaivel L, Subbaraj GK. RAGE gene polymorphism with microvascular complications in diabetic patients: a meta-analysis[J]. Russ J Genet, 2025, 61(4): 473-84. doi:10.1134/s1022795424701874
|
[41] |
Yamazaki Y, Wake H, Nishinaka T, et al. Involvement of multiple scavenger receptors in advanced glycation end product-induced vessel tube formation in endothelial cells[J]. Exp Cell Res, 2021, 408(1): 112857. doi:10.1016/j.yexcr.2021.112857
|
[42] |
Rizzi A, Petrucci G, Sacco M, et al. Effects of low-dose rivaroxaban combined with low-dose aspirin versus low-dose aspirin alone on in vivo platelet activation, endothelial function and inflammation in type 2 diabetes patients with stable atherosclerotic disease: the RivAsa randomized, crossover study[J]. Diabetes Res Clin Pract, 2025, 224: 112244. doi:10.1016/j.diabres.2025.112244
|
[43] |
Arriagada-Petersen C, Fernandez P, Gomez M, et al. Effect of advanced glycation end products on platelet activation and aggregation: a comparative study of the role of glyoxal and methylglyoxal[J]. Platelets, 2021, 32(4): 507-15. doi:10.1080/09537104.2020.1767770
|
[44] |
Hsu YH, Yen YC, Lin YC, et al. Correction: antiplatelet agents maintain arteriovenous fistula and graft function in patients receiving hemodialysis: a nationwide case-control study[J]. PLoS One, 2019, 14(4): e0215546. doi:10.1371/journal.pone.0215546
|
[45] |
Jahan H, Tufail P, Shamim S, et al. 1, 2, 4-Triazine derivatives as agents for the prevention of AGE-RAGE-mediated inflammatory cascade in THP-1 monocytes: an approach to prevent inflammation-induced late diabetic complications[J]. Int Immunopharmacol, 2024, 142(Pt B): 113145. doi:10.1016/j.intimp.2024.113145
|
[46] |
Molinuevo MS, Cortizo AM, Sedlinsky C. Effects of advanced glycation end-products, diabetes and metformin on the osteoblastic transdifferentiation capacity of vascular smooth muscle cells: in vivo and in vitro studies[J]. J Diabetes Complications, 2023, 37(11): 108626. doi:10.1016/j.jdiacomp.2023.108626
|