Journal of Southern Medical University ›› 2025, Vol. 45 ›› Issue (3): 470-478.doi: 10.12122/j.issn.1673-4254.2025.03.04
Xiawei ZHANG1,2(), Jingjing YANG1,2, Yanan WEN1,2, Qingyang LIU1,2, Liping DOU1(
), Chunji GAO1(
)
Received:
2024-11-28
Online:
2025-03-20
Published:
2025-03-28
Contact:
Liping DOU, Chunji GAO
E-mail:phoebe_zxw@qq.com;lipingruirui@163.com;gaochunji301@163.com
Supported by:
Xiawei ZHANG, Jingjing YANG, Yanan WEN, Qingyang LIU, Liping DOU, Chunji GAO. METTL3-mediated m6A modification promotes FOXO3 expression and anthracycline resistance in acute myeloid leukemia cells through autophagy regulation[J]. Journal of Southern Medical University, 2025, 45(3): 470-478.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2025.03.04
Gene | Forward primers sequences | Reverse primers sequences |
---|---|---|
METTL3 | ATCCCCAAGGCTTCAACCAG | GCGAGTGCCAGGAGATAGTC |
FOXO3 | CGGACAAACGGCTCACTCT | GGACCCGCATGAATCGACTAT |
GAPDH | GGAGCGAGATCCCTCCAAAAT | GGCTGTTGTCATACTTCTCATGG |
Tab.1 Primer sequence of RT-qPCR
Gene | Forward primers sequences | Reverse primers sequences |
---|---|---|
METTL3 | ATCCCCAAGGCTTCAACCAG | GCGAGTGCCAGGAGATAGTC |
FOXO3 | CGGACAAACGGCTCACTCT | GGACCCGCATGAATCGACTAT |
GAPDH | GGAGCGAGATCCCTCCAAAAT | GGCTGTTGTCATACTTCTCATGG |
Fig.1 Sequencing analysis of AML cells. A: KEGG enrichment analysis of differential genes in HL60 cells and HL60/ADR cells. B: KEGG enrichment analysis of differential genes in K562/ADR sh-METTL3 cells and K562/ADR sh-con cells. C: MeRIP-seq methylation modification peak analysis in HL60 cells and HL60/ADR cells.
Fig.2 Correlation of METTL3 with FOXO3 expression. A: Correlation analysis of METTL3 and FOXO3 expression in 163 AML patients from TCGA. B: RT-qPCR analysis of FOXO3 expression in sh-METTL3 cells and sh-con cells. C, D: Western blotting of FOXO3 levels in sh-con cells and sh-METTL3 cells. E: RT-qPCR analysis of FOXO3 expression in OE-METTL3 cells and OE-con cells. F, G: Western blotting of FOXO3 levels in OE-con cells and OE-METTL3. ADR: Adriamycin; sh-con: control shRNA; sh-METTL3: METTL3 shRNA; OE-con: overexpressed control RNA; OE-METTL3: METTL3 overexpression. *P<0.05, **P<0.01, ****P<0.0001.
Fig.3 METTL3-mediated m6A modification enhances stability of FOXO3 mRNA. A: MeRIP-qPCR for detecting expression levels of m6A-modified FOXO3 mRNA in anthracycline-resistant cells and anthracycline-sensitive cells. B: MeRIP-qPCR for detecting expression levels of m6A-modified FOXO3 mRNA in OE-con and OE-METTL3 K562/ADR cells. C: RNA stability assay of FOXO3 mRNA in sh-con vs sh-METTL3 groups. *P<0.05, **P<0.01, ***P<0.001.
Characteristics | TCGA | GSE6891 | ||
---|---|---|---|---|
n | % | n | % | |
Age [year, median (range)] | 58 (18-88) | - | 49 (15-60) | - |
Gender | ||||
Female | 76 | 46.6 | 213 | 49.0 |
Male | 87 | 53.4 | 222 | 51.0 |
FAB classification | ||||
M0 | 16 | 9.8 | 16 | 3.7 |
M1 | 44 | 27.0 | 94 | 21.6 |
M2 | 40 | 24.5 | 105 | 24.1 |
M3 | - | - | 1 | 0.2 |
M4 | 35 | 21.5 | 84 | 19.3 |
M5 | 21 | 12.9 | 103 | 23.7 |
M6 | 2 | 1.2 | 6 | 1.4 |
M7 | 3 | 1.8 | 1 | 0.2 |
Unkown | 2 | 1.2 | 25 | 5.7 |
Cytogenetic risk classification | ||||
Favorable | 18 | 11.0 | 75 | 17.2 |
Intermediate | 92 | 56.4 | 258 | 59.3 |
Poor | 50 | 30.7 | 92 | 21.1 |
Unknown | 3 | 1.8 | 10 | 2.3 |
Tab.2 Clinical characteristics of patients in TCGA and GSE6891 databases
Characteristics | TCGA | GSE6891 | ||
---|---|---|---|---|
n | % | n | % | |
Age [year, median (range)] | 58 (18-88) | - | 49 (15-60) | - |
Gender | ||||
Female | 76 | 46.6 | 213 | 49.0 |
Male | 87 | 53.4 | 222 | 51.0 |
FAB classification | ||||
M0 | 16 | 9.8 | 16 | 3.7 |
M1 | 44 | 27.0 | 94 | 21.6 |
M2 | 40 | 24.5 | 105 | 24.1 |
M3 | - | - | 1 | 0.2 |
M4 | 35 | 21.5 | 84 | 19.3 |
M5 | 21 | 12.9 | 103 | 23.7 |
M6 | 2 | 1.2 | 6 | 1.4 |
M7 | 3 | 1.8 | 1 | 0.2 |
Unkown | 2 | 1.2 | 25 | 5.7 |
Cytogenetic risk classification | ||||
Favorable | 18 | 11.0 | 75 | 17.2 |
Intermediate | 92 | 56.4 | 258 | 59.3 |
Poor | 50 | 30.7 | 92 | 21.1 |
Unknown | 3 | 1.8 | 10 | 2.3 |
Fig.4 High FOXO3 expression suggests poor prognosis for patients. A: Analysis of FOXO3 expression levels stratified by cytogenetic prognosis in GSE6891 datasets. B: Survival analysis of 160 AML patients in TCGA. C: RT-qPCR analysis of FOXO3 expression in AML patients. D, E: RT-qPCR (D) and Western blotting (E) of FOXO3 expression in anthracycline-sensitive cells and anthracycline-resistant cells. F, G: RT-qPCR (F) and Western blotting (G) of FOXO3 expression in OE-con and OE-FOXO3 K562/ADR cells. H: Cell proliferation and apoptosis analysis of FOXO3-overexpressing cells. *P<0.05, **P<0.01.
Fig.5 FOXO3 affects anthracycline resistance of AML cells by regulating autophagy. A: GO enrichment analysis in HL60 and HL60/ADR cells. B: GO enrichment analysis in sh-con cells and sh-METTL3 cells. C: Western blotting of autophagy flow in K562 cells and K562/ADR cells. D: Western blotting of autophagy flow in OE-con cells and OE-FOXO3 cells. E: Proliferation analysis of K562/ADR cells treated with Baf.A1 (100 nmol/L) for 72 h. F: Proliferation analysis of OE-FOXO3 cells treated with ADR and Baf.A1 (10 nmol/L) for 72 h. **P<0.01, ***P<0.001.
1 | Bhansali RS, Pratz KW, Lai C. Recent advances in targeted therapies in acute myeloid leukemia[J]. J Hematol Oncol, 2023, 16(1): 29. |
2 | Pollyea DA, Altman JK, Assi R, et al. Acute myeloid leukemia, version 3.2023, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2023, 21(5): 503-13. |
3 | Thol F, Ganser A. Treatment of relapsed acute myeloid leukemia[J]. Curr Treat Options Oncol, 2020, 21(8): 66. |
4 | DiNardo CD, Erba HP, Freeman SD, et al. Acute myeloid leukaemia[J]. Lancet, 2023, 401(10393): 2073-86. |
5 | Stelmach P, Trumpp A. Leukemic stem cells and therapy resistance in acute myeloid leukemia[J]. Haematologica, 2023, 108(2): 353-66. |
6 | An YY, Duan H. The role of m6A RNA methylation in cancer metabolism[J]. Mol Cancer, 2022, 21(1): 14. |
7 | Vu LP, Pickering BF, Cheng YM, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells[J]. Nat Med, 2017, 23(11): 1369-76. |
8 | Hornsveld M, Dansen TB, Derksen PW, et al. Re-evaluating the role of FOXOs in cancer[J]. Semin Cancer Biol, 2018, 50: 90-100. |
9 | Farhan M, Silva M, Li S, et al. The role of FOXOs and autophagy in cancer and metastasis-Implications in therapeutic development[J]. Med Res Rev, 2020, 40(6): 2089-113. |
10 | Naka K, Hoshii T, Muraguchi T, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia[J]. Nature, 2010, 463(7281): 676-80. |
11 | Chakrabarty A, Bhola NE, Sutton C, et al. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors[J]. Cancer Res, 2013, 73(3): 1190-200. |
12 | Yu C, Chen DQ, Liu HX, et al. Rosmarinic acid reduces the resistance of gastric carcinoma cells to 5-fluorouracil by downregul-ating FOXO4-targeting miR-6785-5p[J]. Biomed Pharmacother, 2019, 109: 2327-34. |
13 | Niu JF, Yan TQ, Guo W, et al. The COPS3-FOXO3 positive feedback loop regulates autophagy to promote cisplatin resistance in osteosarcoma[J]. Autophagy, 2023, 19(6): 1693-710. |
14 | Lin ZY, Niu Y, Wan A, et al. RNA m6 A methylation regulates sorafenib resistance in liver cancer through FOXO3‑mediated autophagy[J]. EMBO J, 2020, 39(12): e103181. |
15 | Santamaría CM, Chillón MC, García-Sanz R, et al. High FOXO3a expression is associated with a poorer prognosis in AML with normal cytogenetics[J]. Leuk Res, 2009, 33(12): 1706-9. |
16 | Chen Z, Guo Q, Huang SC, et al. Overcoming adaptive resistance in AML by synergistically targeting FOXO3A-GNG7-mTOR axis with FOXO3A inhibitor Gardenoside and rapamycin[J]. Genes Dis, 2023, 11(1): 397-412. |
17 | 中华医学会血液学分会白血病淋巴瘤学组. 中国成人急性髓系白血病(非急性早幼粒细胞白血病)诊疗指南(2021年版)[J]. 中华血液学杂志, 2021, 42(8): 617-23. |
18 | Zhuang HZ, Yu B, Tao D, et al. The role of m6A methylation in therapy resistance in cancer[J]. Mol Cancer, 2023, 22(1): 91. |
19 | Boulias K, Greer EL. Biological roles of adenine methylation in RNA[J]. Nat Rev Genet, 2023, 24(3): 143-60. |
20 | Zheng X, Gong YP. Functions of RNA N6-methyladenosine modification in acute myeloid leukemia[J]. Biomark Res, 2021, 9(1): 36. |
21 | Hong YG, Yang ZG, Chen Y, et al. The RNA m6A reader YTHDF1 is required for acute myeloid leukemia progression[J]. Cancer Res, 2023, 83(6): 845-60. |
22 | Cheng Y, Gao ZY, Zhang TT, et al. Decoding m6A RNA methylome identifies PRMT6-regulated lipid transport promoting AML stem cell maintenance[J]. Cell Stem Cell, 2023, 30(1): 69-85. e7. |
23 | Li MY, Ye JJ, Xia Y, et al. METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4[J]. Leukemia, 2022, 36(11): 2586-95. |
24 | Fang S, Peng B, Wen YN, et al. Transcriptome-wide analysis of RNA N6-methyladenosine modification in adriamycin-resistant acute myeloid leukemia cells[J]. Front Genet, 2022, 13: 833694. |
25 | Xu YQ, Song M, Hong ZY, et al. The N6-methyladenosine METTL3 regulates tumorigenesis and glycolysis by mediating m6A methylation of the tumor suppressor LATS1 in breast cancer[J]. J Exp Clin Cancer Res, 2023, 42(1): 10. |
26 | Yin H, Chen L, Piao SQ, et al. M6A RNA methylation-mediated RMRP stability renders proliferation and progression of non-small cell lung cancer through regulating TGFBR1/SMAD2/SMAD3 pathway[J]. Cell Death Differ, 2023, 30(3): 605-17. |
27 | Orea-Soufi A, Paik J, Bragança J, et al. FOXO transcription factors as therapeutic targets in human diseases[J]. Trends Pharmacol Sci, 2022, 43(12): 1070-84. |
28 | Rodriguez-Colman MJ, Dansen TB, Burgering BMT. FOXO transcription factors as mediators of stress adaptation[J]. Nat Rev Mol Cell Biol, 2024, 25(1): 46-64. |
29 | Eijkelenboom A, Burgering BMT. FOXOs: signalling integrators for homeostasis maintenance[J]. Nat Rev Mol Cell Biol, 2013, 14(2): 83-97. |
30 | van der Horst A, Burgering BMT. Stressing the role of FoxO proteins in lifespan and disease[J]. Nat Rev Mol Cell Biol, 2007, 8(6): 440-50. |
31 | Long J, Jia MY, Fang WY, et al. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia[J]. Blood, 2020, 135(17): 1472-83. |
32 | Kornblau SM, Singh N, Qiu YH, et al. Highly phosphorylated FOXO3A is an adverse prognostic factor in acute myeloid leukemia[J]. Clin Cancer Res, 2010, 16(6): 1865-74. |
33 | Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24(8): 560-75. |
34 | Luo YH, Zheng ST, Wu QY, et al. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation[J]. Autophagy, 2021, 17(12): 4083-101. |
35 | Warr MR, Binnewies M, Flach J, et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells[J]. Nature, 2013, 494(7437): 323-7. |
[1] | Yue DU, Xiusen ZHANG, Kexu ZHOU, Xing JIN, Xiang YUAN, Shegan GAO. RgpB contributes to chemoresistance in esophageal squamous cell carcinoma by preventing Cx43 degradation via inhibiting autophagosome-lysosome fusion [J]. Journal of Southern Medical University, 2024, 44(9): 1670-1676. |
[2] | CHEN Xing, WANG Kaiwan, CHU Dehai, ZHU Yu, ZHANG Wenbing, CAO Huiping, XIE Wenyu, LU Chuanhao, LI Xia. Forsythiaside B inhibits cerebral ischemia/reperfusion-induced oxidative stress injury in mice via the AMPK/DAF-16/FOXO3 pathway [J]. Journal of Southern Medical University, 2023, 43(2): 199-205. |
[3] | GAO Yinan, WANG Peijun, LU Sumei, MA Wanshan. METTL3 inhibitor STM2457 improves metabolic dysfunction-associated fatty liver disease by regulating mitochondrial function in mice [J]. Journal of Southern Medical University, 2023, 43(10): 1689-1696. |
[4] | WEN Yanan, FANG Shu, YANG Jingjing, WANG Hao, JIAO Yifan, WANG Nan, WEI Yan, WANG Lili, DOU Liping. Characteristics of N6-methyladenosine modification patterns in t(8;21) acute myeloid leukemia [J]. Journal of Southern Medical University, 2022, 42(5): 690-697. |
[5] | ZHANG Xiaoning, ZHANG Xiaoyu, LIU Peng, LIU Kuo, LI Wenwen, CHEN Qianqian, MA Wanshan. Prognostic implications and functional enrichment analysis of LTB4R in patients with acute myeloid leukemia [J]. Journal of Southern Medical University, 2022, 42(3): 309-320. |
[6] | HAO Yanmei, JI Junli, LIU Chunyi, ZHANG Nan, GONG Yajuan. Effects of matrine combined with LY294002 on proliferation, apoptosis and cell cycle of human myeloid leukemia K562 cells [J]. Journal of Southern Medical University, 2022, 42(11): 1739-1746. |
[7] | . RUNX1 gene mutations are associated with adverse prognosis of patients with acute myeloidleukemia [J]. Journal of Southern Medical University, 2020, 40(11): 1601-1606. |
[8] | . Analysis of immunophenotypes and expressions of non-myeloid antigens in acute myeloid leukemia [J]. Journal of Southern Medical University, 2020, 40(11): 1639-1644. |
[9] | . Effect of Foxo3a gene over-expression on the development of rat ovarian granulose cells and in prevention of cisplatin-induced ovarian damage in rats [J]. Journal of Southern Medical University, 2016, 36(06): 796-. |
[10] | . Expressions of CDX2 and β-catenin and their correlation in acute myeloid leukemia [J]. Journal of Southern Medical University, 2015, 35(05): 728-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||