Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (8): 1561-1570.doi: 10.12122/j.issn.1673-4254.2024.08.15
Chuixing WU1(), Weixiong ZHONG1, Jincheng XIE1, Ruimeng YANG2,3, Yuankui WU4, Yikai XU4, Linjing WANG5, Xin ZHEN1(
)
Received:
2024-04-19
Online:
2024-08-20
Published:
2024-09-06
Contact:
Xin ZHEN
E-mail:1527936022@qq.com;xinzhen@smu.edu.cn
Supported by:
Chuixing WU, Weixiong ZHONG, Jincheng XIE, Ruimeng YANG, Yuankui WU, Yikai XU, Linjing WANG, Xin ZHEN. An MRI multi-sequence feature imputation and fusion mutual-aid model based on sequence deletion for differentiation of high-grade from low-grade glioma[J]. Journal of Southern Medical University, 2024, 44(8): 1561-1570.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.08.15
Characteristics | HGG(n=189) | LGG(n=116) | P | |
---|---|---|---|---|
Age (year) | ||||
≤50 | 108 (57.1%) | 107(92.2%) | -7.021* | 2.460 |
>50 | 81 (42.9%) | 9(7.8%) | ||
Gender | ||||
Female | 73 (38.6%) | 48(41.4%) | 1.652# | 0.199 |
Male | 116 (61.4%) | 68(58.6%) |
Tab.1 Demographic characteristics of the patients with HGG and LGG [n (%)]
Characteristics | HGG(n=189) | LGG(n=116) | P | |
---|---|---|---|---|
Age (year) | ||||
≤50 | 108 (57.1%) | 107(92.2%) | -7.021* | 2.460 |
>50 | 81 (42.9%) | 9(7.8%) | ||
Gender | ||||
Female | 73 (38.6%) | 48(41.4%) | 1.652# | 0.199 |
Male | 116 (61.4%) | 68(58.6%) |
Categories of radiomics features | Radiomics features |
---|---|
First Order Features (m=19) | Mean, Median, Maximum, Minimum, Robust Mean Absolute Deviation, Root Mean Squared, Mean Absolute Deviation, 10th percentile, 90th percentile, Uniformity, Standard Deviation, Skewness, Kurtosis, Variance, Energy, Total Energy, Entropy Minimum, Range, Interquartile Range |
Shape Features (m=15) | Elongation, Flatness, Major Axis Length, Least Axis Length, Maximum 2D diameter (Column), Maximum 2Ddiameter (Row), Maximum 2D diameter (Slice), Maximum 3D diameter, Minor Axis Length, Sphericity, Surface Area, Mesh Volume, Surface Volume Ratio, Spherical Disproportion, Voxel Volume |
Texture Features (m=75) | 1NGTDM (m=5), 2GLDM (m=14), 3GLSZM (m=16), 4GLRLM (m =16), 5GLCM (m =24) |
Tab.2 Extracted MRI radiomics features
Categories of radiomics features | Radiomics features |
---|---|
First Order Features (m=19) | Mean, Median, Maximum, Minimum, Robust Mean Absolute Deviation, Root Mean Squared, Mean Absolute Deviation, 10th percentile, 90th percentile, Uniformity, Standard Deviation, Skewness, Kurtosis, Variance, Energy, Total Energy, Entropy Minimum, Range, Interquartile Range |
Shape Features (m=15) | Elongation, Flatness, Major Axis Length, Least Axis Length, Maximum 2D diameter (Column), Maximum 2Ddiameter (Row), Maximum 2D diameter (Slice), Maximum 3D diameter, Minor Axis Length, Sphericity, Surface Area, Mesh Volume, Surface Volume Ratio, Spherical Disproportion, Voxel Volume |
Texture Features (m=75) | 1NGTDM (m=5), 2GLDM (m=14), 3GLSZM (m=16), 4GLRLM (m =16), 5GLCM (m =24) |
Algorithm 1 Pseudocode of the Proposed Method |
---|
Training stage Input: multimodal feature matrix Output: |
Begin Initialize For Update Update Update Update End End |
Testing stage Input: new unseen multimodal feature Output: fused representation |
Tab.3 Pseudocode of MRI multi-sequence feature imputation and fusion mutual aid model based on sequence deletion
Algorithm 1 Pseudocode of the Proposed Method |
---|
Training stage Input: multimodal feature matrix Output: |
Begin Initialize For Update Update Update Update End End |
Testing stage Input: new unseen multimodal feature Output: fused representation |
Actual\\Predicted | Predicted Negative (PN) | Predicted Positive (PP) |
---|---|---|
Actual Negative (AN) | True Negative (TN) | False Positive (FP) |
Actual Positive (AP) | False Negative (FN) | True Positive (TP) |
Tab.4 Confusion Matrix
Actual\\Predicted | Predicted Negative (PN) | Predicted Positive (PP) |
---|---|---|
Actual Negative (AN) | True Negative (TN) | False Positive (FP) |
Actual Positive (AP) | False Negative (FN) | True Positive (TP) |
Classifier | ACC/BAcc | AUC | SPE | SEN |
---|---|---|---|---|
SVM | 0.770/0.758 | 0.824 | 0.724 | 0.792 |
LDA | 0.761/0.743 | 0.797 | 0.684 | 0.802 |
KNN | 0.767/0.751 | 0.761 | 0.709 | 0.792 |
Bagging | 0.744/0.731 | 0.790 | 0.689 | 0.772 |
XGBoost | 0.764/0.743 | 0.794 | 0.668 | 0.819 |
AdaBoost | 0.731/0.711 | 0.711 | 0.651 | 0.771 |
Gaussian NB | 0.767/0.756 | 0.790 | 0.737 | 0.774 |
Logistic regression | 0.777/0.768 | 0.826 | 0.754 | 0.780 |
Tab.5 Performance comparison after feeding the fusion multimodal data into various classifiers
Classifier | ACC/BAcc | AUC | SPE | SEN |
---|---|---|---|---|
SVM | 0.770/0.758 | 0.824 | 0.724 | 0.792 |
LDA | 0.761/0.743 | 0.797 | 0.684 | 0.802 |
KNN | 0.767/0.751 | 0.761 | 0.709 | 0.792 |
Bagging | 0.744/0.731 | 0.790 | 0.689 | 0.772 |
XGBoost | 0.764/0.743 | 0.794 | 0.668 | 0.819 |
AdaBoost | 0.731/0.711 | 0.711 | 0.651 | 0.771 |
Gaussian NB | 0.767/0.756 | 0.790 | 0.737 | 0.774 |
Logistic regression | 0.777/0.768 | 0.826 | 0.754 | 0.780 |
Model | 10% | 30% | 50% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ACC/BAcc | SPE | SEN | ACC/BAcc | SPE | SEN | ACC/BAcc | SPE | SEN | |||
BSV | 0.639/0.611 | 0.491 | 0.730 | 0.662/0.613 | 0.405 | 0.820 | 0.646/0.569 | 0.250 | 0.889 | ||
Concat | 0.620/0.592 | 0.474 | 0.709 | 0.620/0.587 | 0.448 | 0.725 | 0.616/0.574 | 0.397 | 0.751 | ||
DAIMC | 0.616/0.589 | 0.474 | 0.704 | 0.607/0.583 | 0.483 | 0.683 | 0.600/0.499 | 0.078 | 0.921 | ||
AWGF | 0.646/0.644 | 0.638 | 0.651 | 0.554/0.549 | 0.526 | 0.571 | 0.580/0.561 | 0.483 | 0.640 | ||
PIC | 0.600/0.532 | 0.250 | 0.815 | 0.620/0.528 | 0.147 | 0.910 | 0.574/0.605 | 0.733 | 0.476 | ||
CDIMC | 0.607/0.456 | 0.196 | 0.716 | 0.593/0.524 | 0.815 | 0.233 | 0.534/0.461 | 0.482 | 0.440 | ||
MKKM_IK | 0.603/0.627 | 0.724 | 0.529 | 0.597/0.620 | 0.716 | 0.524 | 0.590/0.589 | 0.586 | 0.593 | ||
Proposed | 0.777/0.768 | 0.754 | 0.780 | 0.754/0.742 | 0.702 | 0.783 | 0.734/0.734 | 0.708 | 0.759 |
Tab.6 Classification performance of this model and other models for discriminating HGG from LGG at different missing rates
Model | 10% | 30% | 50% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ACC/BAcc | SPE | SEN | ACC/BAcc | SPE | SEN | ACC/BAcc | SPE | SEN | |||
BSV | 0.639/0.611 | 0.491 | 0.730 | 0.662/0.613 | 0.405 | 0.820 | 0.646/0.569 | 0.250 | 0.889 | ||
Concat | 0.620/0.592 | 0.474 | 0.709 | 0.620/0.587 | 0.448 | 0.725 | 0.616/0.574 | 0.397 | 0.751 | ||
DAIMC | 0.616/0.589 | 0.474 | 0.704 | 0.607/0.583 | 0.483 | 0.683 | 0.600/0.499 | 0.078 | 0.921 | ||
AWGF | 0.646/0.644 | 0.638 | 0.651 | 0.554/0.549 | 0.526 | 0.571 | 0.580/0.561 | 0.483 | 0.640 | ||
PIC | 0.600/0.532 | 0.250 | 0.815 | 0.620/0.528 | 0.147 | 0.910 | 0.574/0.605 | 0.733 | 0.476 | ||
CDIMC | 0.607/0.456 | 0.196 | 0.716 | 0.593/0.524 | 0.815 | 0.233 | 0.534/0.461 | 0.482 | 0.440 | ||
MKKM_IK | 0.603/0.627 | 0.724 | 0.529 | 0.597/0.620 | 0.716 | 0.524 | 0.590/0.589 | 0.586 | 0.593 | ||
Proposed | 0.777/0.768 | 0.754 | 0.780 | 0.754/0.742 | 0.702 | 0.783 | 0.734/0.734 | 0.708 | 0.759 |
Actual\\Predicted | 10% | 30% | 50% | |||||
---|---|---|---|---|---|---|---|---|
PN | PP | PN | PP | PN | PP | |||
AN | 88 | 28 | 81 | 35 | 81 | 35 | ||
AP | 40 | 149 | 40 | 149 | 46 | 143 |
Tab.7 Confusion matrix results of the model for the classification task of HGG and LGG
Actual\\Predicted | 10% | 30% | 50% | |||||
---|---|---|---|---|---|---|---|---|
PN | PP | PN | PP | PN | PP | |||
AN | 88 | 28 | 81 | 35 | 81 | 35 | ||
AP | 40 | 149 | 40 | 149 | 46 | 143 |
1 | Tan AC, Ashley DM, López GY, et al. Management of glioblastoma: state of the art and future directions[J]. CA Cancer J Clin, 2020, 70(4): 299-312. |
2 | Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-51. |
3 | Banerjee S, Mitra S, Masulli F, et al. Deep radiomics for brain tumor detection and classification from multi-sequence MRI[J]. arXiv preprint arXiv: 1903. 09240, 2019. |
4 | Ellingson BM, Bendszus M, Boxerman J, et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials[J]. Neuro Oncol, 2015, 17(9): 1188-98. |
5 | Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-77. |
6 | Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-62. |
7 | Gore S, Chougule T, Jagtap J, et al. A review of radiomics and deep predictive modeling in glioma characterization[J]. Acad Radiol, 2021, 28(11): 1599-621. |
8 | Wang XY, Wang DQ, Yao ZG, et al. Machine learning models for multiparametric glioma grading with quantitative result interpretations[J]. Front Neurosci, 2018, 12: 1046. |
9 | Bisdas S, Shen HC, Thust S, et al. Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study[J]. Sci Rep, 2018, 8(1): 6108-17. |
10 | Cho HH, Park H. Classification of low-grade and high-grade glioma using multi-modal image radiomics features[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 3081-4. |
11 | Tian Q, Yan LF, Zhang X, et al. Radiomics strategy for glioma grading using texture features from multiparametric MRI[J]. J Magn Reson Imaging, 2018, 48(6): 1518-28. |
12 | Sudre CH, Panovska-Griffiths J, Sanverdi E, et al. Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status[J]. BMC Med Inform Decis Mak, 2020, 20(1): 149-62. |
13 | Yang Y, Yan LF, Zhang X, et al. Glioma grading on conventional MR images: a deep learning study with transfer learning[J]. Front Neurosci, 2018, 12: 804. |
14 | Xu C, Tao D, Xu C. A Survey on Multi-view Learning[J]. Computer Science, 2013,4. arXiv.org. |
15 | Wen J, Zhang Z, Fei L, et al. A Survey on Incomplete Multiview Clustering[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(2): 1136-49. |
16 | Ng A, Jordan MI, Weiss Y. On Spectral Clustering: analysis and an algorithm[J]. Adv Neural Inf Process Syst, 2001, 14. |
17 | Hu ML, Chen SC. Doubly aligned incomplete multi-view clustering[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. July 13-19, 2018. Stockholm, Sweden. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 2262-8. |
18 | Shao WX, He LF, Lu CT, et al. Online multi-view clustering with incomplete views[C]//2016 IEEE International Conference on Big Data (Big Data). December 5-8, 2016. Washington DC, USA. IEEE, 2016: 1012-7. |
19 | Zhao H, Liu H, Fu Y. Incomplete multi-modal visual data grouping[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016: 2392-8. |
20 | Wen J, Zhang Z, Xu Y, et al. Incomplete multi-view clustering via graph regularized matrix factorization[C]//European Conference on Computer Vision. Cham: Springer, 2019: 593-608. |
21 | Hu M, Chen S. One-pass incomplete multi-view clustering[C]//. Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. Honolulu, Hawaii, USA: AAAI Press, 2019: 471. |
22 | Wen J, Zhang Z, Zhang Z, et al. Unified tensor framework for incomplete multi-view clustering and missing-view inferring[J]. Proc AAAI Conf Artif Intell, 2021, 35(11): 10273-81. |
23 | Zhang P, Wang SW, Hu JT, et al. Adaptive weighted graph fusion incomplete multi-view subspace clustering[J]. Sensors, 2020, 20(20): 5755. |
24 | Wen J, Xu Y, Liu H. Incomplete multiview spectral clustering with adaptive graph learning[J]. IEEE Trans Cybern, 2020, 50(4): 1418-29. |
25 | Liu XW, Zhu XZ, Li MM, et al. Efficient and effective incomplete multi-view clustering[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020. |
26 | Liu XW, Li MM, Tang C, et al. Efficient and effective regularized incomplete multi-view clustering[J]. IEEE Trans Pattern Anal Mach Intell, 2021, 43(8): 2634-46. |
27 | Liu XW, Wang L, Yin JP, et al. Absent multiple kernel learning[J]. Proc AAAI Conf Artif Intell, 2015, 29(1): 2807-13. |
28 | Liu XW, Zhu XZ, Li MM, et al. Multiple kernel k-means with incomplete kernels[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(5): 1191-204. |
29 | Xu C, Guan ZY, Zhao W, et al. Adversarial incomplete multi-view clustering[C]. IEEE Transactions on Cybernetics, 2019. |
30 | Wen J, Zhang Z, Xu Y, et al. CDIMC-net: cognitive deep incomplete multi-view clustering network[C]. Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence. 2021: 3230-6. |
31 | Wang QQ, Ding ZM, Tao ZQ, et al. Partial multi-view clustering via consistent GAN[C]//2018 IEEE International Conference on Data Mining (ICDM). November 17-20, 2018. Singapore. IEEE, 2018: 1290-5. |
32 | Li SY, Jiang Y, Zhou ZH. Partial multi-view clustering[J]. Proc AAAI Conf Artif Intell, 2014, 28(1): 1968-74. |
33 | van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-7. |
34 | Elmannai H, El-Rashidy N, Mashal I, et al. Polycystic ovary syndrome detection machine learning model based on optimized feature selection and explainable artificial intelligence[J]. Diagnostics, 2023, 13(8): 1506. |
35 | Wang H, Zong LL, Liu B, et al. Spectral perturbation meets incomplete multi-view data[J/OL]. Computer Science, 2019:. |
36 | Maaten L, Hinton GE. Visualizing Data using t-SNE[J]. J Mach Learn Res, 2008, 9(11). |
37 | Venkatesh B, Anuradha J. A review of feature selection and its methods[J]. Cybern Inf Technol, 2019, 19(1): 3-26. |
38 | Zebari R, Abdulazeez A, Zeebaree D, et al. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction[J]. J Appl Sci Technol Trends, 2020, 1(1): 56-70. |
39 | Blackwell M, Honaker J, King G. A unified approach to measurement error and missing data: overview and applications[J]. Sociol Meth Res, 2017, 46(3): 303-41. |
40 | Emmanuel T, Maupong T, Mpoeleng D, et al. A survey on missing data in machine learning[J]. J Big Data, 2021, 8(1): 140. |
41 | Zhou T, Liu MX, Thung KH, et al. Latent representation learning for Alzheimer's disease diagnosis with incomplete multi-modality neuroimaging and genetic data[J]. IEEE Trans Med Imaging, 2019, 38(10): 2411-22. |
42 | Kopf A, Claassen M. Latent representation learning in biology and translational medicine[J]. Patterns, 2021, 2(3): 100198. |
43 | Ning ZY, Xiao Q, Feng QJ, et al. Relation-induced multi-modal shared representation learning for Alzheimer's disease diagnosis[J]. IEEE Trans Med Imaging, 2021, 40(6): 1632-45. |
44 | Shen DG, Wu GR, Suk HI. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng, 2017, 19: 221-48. |
45 | Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-8. |
46 | Wang GT, Li WQ, Zuluaga MA, et al. Interactive medical image segmentation using deep learning with image-specific fine tuning[J]. IEEE Trans Med Imaging, 2018, 37(7): 1562-73. |
[1] | ZHANG Zhenyang, XIE Jincheng, ZHONG Weixiong, LIANG Fangrong, YANG Ruimeng, ZHEN Xin. A multi-modal feature fusion classification model based on distance matching and discriminative representation learning for differentiation of high-grade glioma from solitary brain metastasis [J]. Journal of Southern Medical University, 2024, 44(1): 138-145. |
[2] | ZHAO Weijiang, LIN Jiazhe. Neuregulin 2 is highly expressed in glioma tissues to regulate glial fibrillary acidic protein expression via Akt signaling [J]. Journal of Southern Medical University, 2021, 41(8): 1171-1176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||