Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (6): 1198-1208.doi: 10.12122/j.issn.1673-4254.2024.06.22
Zongyue LIN(), Yongbo WANG, Zhaoying BIAN, Jianhua MA(
)
Received:
2023-12-25
Online:
2024-06-20
Published:
2024-07-01
Contact:
Jianhua MA
E-mail:lzy313@smu.edu.cn;jhma@smu.edu.cn
Supported by:
Zongyue LIN, Yongbo WANG, Zhaoying BIAN, Jianhua MA. A deep blur learning-based motion artifact reduction algorithm for dental cone-beam computed tomography images[J]. Journal of Southern Medical University, 2024, 44(6): 1198-1208.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.06.22
Methods | Uncorrected | U-net | WGAN | HINet | Restormer | Ours |
---|---|---|---|---|---|---|
RMSE | 7.7350 | 9.5548 | 7.7357 | 6.2869 | 5.5503 | 4.9629 |
PSNR | 30.4728 | 28.8756 | 30.4767 | 32.2988 | 33.3387 | 34.2981 |
SSIM | 0.9130 | 0.9176 | 0.9017 | 0.9391 | 0.9476 | 0.9560 |
Tab.1 Quantitative comparison of restoration of simulated motion data using different methods
Methods | Uncorrected | U-net | WGAN | HINet | Restormer | Ours |
---|---|---|---|---|---|---|
RMSE | 7.7350 | 9.5548 | 7.7357 | 6.2869 | 5.5503 | 4.9629 |
PSNR | 30.4728 | 28.8756 | 30.4767 | 32.2988 | 33.3387 | 34.2981 |
SSIM | 0.9130 | 0.9176 | 0.9017 | 0.9391 | 0.9476 | 0.9560 |
Methods | Scores (Mean±SD) | P |
---|---|---|
U-net WGAN HINet Restormer Ours | 2.250±0.778 2.208±0.762 3.083±0.759 3.667±0.687 4.417±0.571 | <0.001 <0.001 <0.001 <0.001 - |
Tab.2 Overall image quality score statistics
Methods | Scores (Mean±SD) | P |
---|---|---|
U-net WGAN HINet Restormer Ours | 2.250±0.778 2.208±0.762 3.083±0.759 3.667±0.687 4.417±0.571 | <0.001 <0.001 <0.001 <0.001 - |
Methods | Uncorrected | Restormer | Ours |
---|---|---|---|
RMSE | 8.7842 | 6.5889 | 5.8347 |
PSNR | 0.9052 | 0.9406 | 0.9498 |
SSIM | 29.6934 | 32.2733 | 33.2851 |
Tab.3 Quantitative comparison of verification experiment results of the joint learning framework
Methods | Uncorrected | Restormer | Ours |
---|---|---|---|
RMSE | 8.7842 | 6.5889 | 5.8347 |
PSNR | 0.9052 | 0.9406 | 0.9498 |
SSIM | 29.6934 | 32.2733 | 33.2851 |
1 | Kaasalainen T, Ekholm M, Siiskonen T, et al. Dental cone beam CT: an updated review[J]. Phys Med, 2021, 88: 193-217. |
2 | Nemtoi A, Czink C, Haba D, et al. Cone beam CT: a current overview of devices[J]. Dentomaxillofac Radiol, 2013, 42(8): 20120443. |
3 | Spin-Neto R, Wenzel A. Patient movement and motion artefacts in cone beam computed tomography of the dentomaxillofacial region: a systematic literature review[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2016, 121(4): 425-33. |
4 | Hanzelka T, Dusek J, Ocasek F, et al. Movement of the patient and the cone beam computed tomography scanner: objectives and possible solutions[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013, 116(6): 769-73. |
5 | Spin-Neto R, Costa C, Salgado DM, et al. Patient movement characteristics and the impact on CBCT image quality and interpretability[J]. Dentomaxillofac Radiol, 2018, 47(1): 20170216. |
6 | Weisenberger AG, Gleason SS, Goddard J, et al. A restraint-free small animal SPECT imaging system with motion tracking[J]. IEEE Trans Nucl Sci, 2005, 52(3): 638-44. |
7 | Herzog H, Tellmann L, Fulton R, et al. Motion artifact reduction on parametric PET images of neuroreceptor binding[J]. J Nucl Med, 2005, 46(6): 1059-65. |
8 | Kim JH, Nuyts J, Kyme A, et al. A rigid motion correction method for helical computed tomography (CT)[J]. Phys Med Biol, 2015, 60(5): 2047-73. |
9 | Kyme AZ, Se S, Meikle SR, et al. Markerless motion estimation for motion-compensated clinical brain imaging[J]. Phys Med Biol, 2018, 63(10): 105018. |
10 | Sisniega A, Stayman JW, Yorkston J, et al. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion[J]. Phys Med Biol, 2017, 62(9): 3712-34. |
11 | Maur S, Stsepankou D, Hesser J. Auto-calibration by locally consistent contours for dental CBCT[J]. Phys Med Biol, 2018, 63(21): 215018. |
12 | Huang H, Siewerdsen JH, Zbijewski W, et al. Reference-free learning-based similarity metric for motion compensation in cone-beam CT[J]. Phys Med Biol, 2022, 67(12): 10.1088/1361-6560/ac749a. |
13 | Hahn J, Bruder H, Rohkohl C, et al. Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data[J]. Med Phys, 2017, 44(11): 5795-813. |
14 | Berger M, Xia Y, Aichinger W, et al. Motion compensation for cone-beam CT using Fourier consistency conditions[J]. Phys Med Biol, 2017, 62(17): 7181-215. |
15 | Preuhs A, Maier A, Manhart M, et al. Symmetry prior for epipolar consistency[J]. Int J Comput Assist Radiol Surg, 2019, 14(9): 1541-51. |
16 | Ouadah S, Jacobson M, Stayman JW, et al. Correction of patient motion in cone-beam CT using 3D-2D registration[J]. Phys Med Biol, 2017, 62(23): 8813-31. |
17 | Niebler S, Schömer E, Tjaden H, et al. Projection-based improvement of 3D reconstructions from motion-impaired dental cone beam CT data[J]. Med Phys, 2019, 46(10): 4470-80. |
18 | Hu ZL, Jiang CH, Zhang QY, et al. Wasserstein generative adversarial networks for motion artifact removal in dental CT imaging[C]//Medical Imaging 2019: Physics of Medical Imaging. February 16-21, 2019. San Diego, USA. SPIE, 2019: 1094836. |
19 | Su B, Wen YT, Liu YY, et al. A deep learning method for eliminating head motion artifacts in computed tomography[J]. Med Phys, 2022, 49(1): 411-9. |
20 | Ko Y, Moon S, Baek J, et al. Rigid and non-rigid motion artifact reduction in X-ray CT using attention module[J]. Med Image Anal, 2021, 67: 101883. |
21 | Spin-Neto R, Matzen LH, Schropp LW, et al. An ex vivo study of automated motion artefact correction and the impact on cone beam CT image quality and interpretability[J]. Dentomaxillofacial Radiol, 2018: 20180013. |
22 | Kim JH, Sun T, Alcheikh AR, et al. Correction for human head motion in helical X-ray CT[J]. Phys Med Biol, 2016, 61(4): 1416-38. |
23 | Li XH, Da Z, Liu B. A generic geometric calibration method for tomographic imaging systems with flat-panel detectors: a detailed implementation guide[J]. Med Phys, 2010, 37(7): 3844-54. |
24 | Li DS, Zhang Y, Cheung KC, et al. Learning degradation representations for image deblurring[C]//European Conference on Computer Vision. Cham: Springer, 2022: 736-753. |
25 | Park T, Liu MY, Wang TC, et al. Semantic image synthesis with spatially-adaptive normalization[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 2332-41. |
26 | Mechrez R, Talmi I, Shama F, et al. Maintaining natural image statistics with the contextual loss[C]//Asian Conference on Computer Vision. Cham: Springer, 2019: 427-443. |
27 | Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-41. |
28 | Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4 ‑9, 2017, Long Beach, California, USA. ACM, 2017: 5769-79. |
29 | Chen LY, Lu X, Zhang J, et al. HINet: half instance normalization network for image restoration[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville, TN, USA. IEEE, 2021: 182-92. |
30 | Zamir SW, Arora A, Khan S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA. IEEE, 2022: 5718-29. |
31 | Sun T, Jacobs R, Pauwels R, et al. A motion correction approach for oral and maxillofacial cone-beam CT imaging[J]. Phys Med Biol, 2021, 66(12): 125008. |
32 | Wang ZH, Chen J, Hoi SCH. Deep learning for image super-resolution: a survey[J]. IEEE Trans Pattern Anal Mach Intell, 2021, 43(10): 3365-87. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||