Journal of Southern Medical University ›› 2024, Vol. 44 ›› Issue (5): 851-858.doi: 10.12122/j.issn.1673-4254.2024.05.06
• Clinical Research • Previous Articles Next Articles
Hongsen WANG1(), Lijie MI2(
), Yue ZHANG3(
), Lan GE1, Jiewei LAI3, Tao CHEN1, Jian LI1, Xiangmin SHI1, Jiancheng XIU4, Min TANG2, Wei YANG3, Jun GUO1(
)
Received:
2023-08-29
Online:
2024-05-20
Published:
2024-06-06
Contact:
Jun GUO
E-mail:whsin301@163.com;milijie@sina.com;1378046135@qq.com;guojun301@126.com
Hongsen WANG, Lijie MI, Yue ZHANG, Lan GE, Jiewei LAI, Tao CHEN, Jian LI, Xiangmin SHI, Jiancheng XIU, Min TANG, Wei YANG, Jun GUO. An intelligent model for classifying supraventricular tachycardia mechanisms based on 12-lead wearable electrocardiogram devices[J]. Journal of Southern Medical University, 2024, 44(5): 851-858.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.j-smu.com/EN/10.12122/j.issn.1673-4254.2024.05.06
Item | AVNRT (n=68) | AVRT (n=33) | Total (n=101) | P |
---|---|---|---|---|
Age (years) | 47.68±14.24 | 42.09±13.72 | 45.85±14.25 | 0.064 |
BMI (kg/m2) | 24.35±3.44 | 23.98±2.92 | 24.23±3.27 | 0.591 |
Male | 28 (41.2%) | 19 (57.6%) | 47 (46.5%) | 0.121 |
Heart rate (bpm) | 78.97±13.29 | 76.48±11.02 | 78.16±12.60 | 0.355 |
SBP (mmHg) | 131.25±14.33 | 127.97±15.77 | 130.18±14.81 | 0.299 |
DBP (mmHg) | 78.28±10.85 | 75.82±11.88 | 77.48±11.20 | 0.302 |
K+ (mmol/L) | 3.84±0.29 | 4.01±0.33 | 3.89±0.32 | 0.010† |
Na+ (mmol/L) | 140.60±1.96 | 141.50±2.69 | 140.89±2.25 | 0.058 |
Cl- (mmol/L) | 104.50±2.17 | 105.45±2.12 | 104.81±2.19 | 0.040† |
Ca2+ (mmol/L) | 2.32±0.12 | 2.36±0.19 | 2.33±0.15 | 0.181 |
Palpitation | 65 (95.6%) | 33 (100.0%) | 98 (97.0%) | 0.549 |
Chest pain | 25 (36.8%) | 17 (51.5%) | 42 (41.6%) | 0.158 |
Weak | 5 (7.4%) | 3 (9.1%) | 8 (7.9%) | 0.714 |
Sweating | 9 (13.2%) | 7 (21.2%) | 16 (15.8%) | 0.303 |
Neck palpitation | 3 (4.4%) | 2 (6.1%) | 5 (5.0%) | 0.661 |
Pant | 7 (10.3%) | 4 (12.1%) | 11 (10.9%) | 0.746 |
Syncope | 6 (8.8%) | 3 (9.1%) | 9 (8.9%) | 1.000 |
Headache | 10 (14.7%) | 3 (9.1%) | 13 (12.9%) | 0.538 |
Age at first onset (years) | 39.06±18.26 | 33.00±15.09 | 37.08±17.45 | 0.102 |
Number of episodes | 18.21±27.56 | 40.82±90.68 | 25.59±57.04 | 0.170 |
Duration (min) | 0.095 | |||
<10 | 9 (13.2%) | 11 (33.3%) | 20 (19.8%) | |
10-30 | 21 (30.9%) | 6 (18.2%) | 27 (26.7%) | |
30-120 | 22 (32.4%) | 8 (24.2%) | 30 (29.7%) | |
>120 | 16 (23.5%) | 8 (24.2%) | 24 (23.8%) | |
Smoking | 10 (14.7%) | 8 (24.2%) | 18 (17.8%) | 0.240 |
Drinking | 8 (11.8%) | 3 (9.1%) | 11 (10.9%) | 1.000 |
Beta blockers | 3 (4.4%) | 3 (9.1%) | 6 (5.9%) | 0.389 |
CCB | 3 (4.4%) | 3 (9.1%) | 6 (5.9%) | 0.389 |
Hypertension | 15 (22.1%) | 5 (15.2%) | 20 (19.8%) | 0.414 |
AF | 2 (2.9%) | 0 (0.0%) | 2 (1.0%) | 1.000 |
Diabetes | 3 (4.5%) | 0 (0.0%) | 3 (3.0%) | 0.549 |
CAD | 3 (4.4%) | 2 (6.1%) | 5 (5.0%) | 0.661 |
Tab.1 Baseline characteristics of the patients with atrioventricular nodal re-entrant tachycardia (AVNRT) and atrioventricular re-entrant tachycardia (AVRT)
Item | AVNRT (n=68) | AVRT (n=33) | Total (n=101) | P |
---|---|---|---|---|
Age (years) | 47.68±14.24 | 42.09±13.72 | 45.85±14.25 | 0.064 |
BMI (kg/m2) | 24.35±3.44 | 23.98±2.92 | 24.23±3.27 | 0.591 |
Male | 28 (41.2%) | 19 (57.6%) | 47 (46.5%) | 0.121 |
Heart rate (bpm) | 78.97±13.29 | 76.48±11.02 | 78.16±12.60 | 0.355 |
SBP (mmHg) | 131.25±14.33 | 127.97±15.77 | 130.18±14.81 | 0.299 |
DBP (mmHg) | 78.28±10.85 | 75.82±11.88 | 77.48±11.20 | 0.302 |
K+ (mmol/L) | 3.84±0.29 | 4.01±0.33 | 3.89±0.32 | 0.010† |
Na+ (mmol/L) | 140.60±1.96 | 141.50±2.69 | 140.89±2.25 | 0.058 |
Cl- (mmol/L) | 104.50±2.17 | 105.45±2.12 | 104.81±2.19 | 0.040† |
Ca2+ (mmol/L) | 2.32±0.12 | 2.36±0.19 | 2.33±0.15 | 0.181 |
Palpitation | 65 (95.6%) | 33 (100.0%) | 98 (97.0%) | 0.549 |
Chest pain | 25 (36.8%) | 17 (51.5%) | 42 (41.6%) | 0.158 |
Weak | 5 (7.4%) | 3 (9.1%) | 8 (7.9%) | 0.714 |
Sweating | 9 (13.2%) | 7 (21.2%) | 16 (15.8%) | 0.303 |
Neck palpitation | 3 (4.4%) | 2 (6.1%) | 5 (5.0%) | 0.661 |
Pant | 7 (10.3%) | 4 (12.1%) | 11 (10.9%) | 0.746 |
Syncope | 6 (8.8%) | 3 (9.1%) | 9 (8.9%) | 1.000 |
Headache | 10 (14.7%) | 3 (9.1%) | 13 (12.9%) | 0.538 |
Age at first onset (years) | 39.06±18.26 | 33.00±15.09 | 37.08±17.45 | 0.102 |
Number of episodes | 18.21±27.56 | 40.82±90.68 | 25.59±57.04 | 0.170 |
Duration (min) | 0.095 | |||
<10 | 9 (13.2%) | 11 (33.3%) | 20 (19.8%) | |
10-30 | 21 (30.9%) | 6 (18.2%) | 27 (26.7%) | |
30-120 | 22 (32.4%) | 8 (24.2%) | 30 (29.7%) | |
>120 | 16 (23.5%) | 8 (24.2%) | 24 (23.8%) | |
Smoking | 10 (14.7%) | 8 (24.2%) | 18 (17.8%) | 0.240 |
Drinking | 8 (11.8%) | 3 (9.1%) | 11 (10.9%) | 1.000 |
Beta blockers | 3 (4.4%) | 3 (9.1%) | 6 (5.9%) | 0.389 |
CCB | 3 (4.4%) | 3 (9.1%) | 6 (5.9%) | 0.389 |
Hypertension | 15 (22.1%) | 5 (15.2%) | 20 (19.8%) | 0.414 |
AF | 2 (2.9%) | 0 (0.0%) | 2 (1.0%) | 1.000 |
Diabetes | 3 (4.5%) | 0 (0.0%) | 3 (3.0%) | 0.549 |
CAD | 3 (4.4%) | 2 (6.1%) | 5 (5.0%) | 0.661 |
Item | AVNRT (n=68) | AVRT (n=33) | Total (n=101) | P |
---|---|---|---|---|
PR intervals (ms) | 145.47±18.31 | 147.12±34.13 | 146.02±24.56 | 0.796 |
QRS duration (ms) | 92.08±12.18 | 105.91±22.59 | 96.69±17.55 | 0.002 |
QT (ms) | 383.77±34.87 | 380.12±50.55 | 382.56±40.55 | 0.675 |
QTc (ms) | 425.42±28.30 | 429.58±24.94 | 426.81±27.17 | 0.476 |
Tab.2 Baseline electrocardiogram parameters of the patients with AVNRT and AVRT
Item | AVNRT (n=68) | AVRT (n=33) | Total (n=101) | P |
---|---|---|---|---|
PR intervals (ms) | 145.47±18.31 | 147.12±34.13 | 146.02±24.56 | 0.796 |
QRS duration (ms) | 92.08±12.18 | 105.91±22.59 | 96.69±17.55 | 0.002 |
QT (ms) | 383.77±34.87 | 380.12±50.55 | 382.56±40.55 | 0.675 |
QTc (ms) | 425.42±28.30 | 429.58±24.94 | 426.81±27.17 | 0.476 |
Parameter | AVNRT (n=68) | AVRT (n=33) | Total (n=101) | P |
---|---|---|---|---|
HR (bpm) | 169.46±29.81 | 161.52±21.71 | 166.86±27.57 | 0.176 |
QRS duration (ms) | 77.19±10.22 | 79.30±15.31 | 77.88±12.08 | 0.413 |
QT (ms) | 292.66±35.08 | 304.00±37.07 | 296.37±35.96 | 0.138 |
QTc (ms) | 472.40±48.20 | 476.58±68.02 | 473.76±55.14 | 0.723 |
QTcd (ms) | 143.74±80.20 | 170.06±91.56 | 152.34±84.53 | 0.143 |
Tab.3 ECG parameters at the onset
Parameter | AVNRT (n=68) | AVRT (n=33) | Total (n=101) | P |
---|---|---|---|---|
HR (bpm) | 169.46±29.81 | 161.52±21.71 | 166.86±27.57 | 0.176 |
QRS duration (ms) | 77.19±10.22 | 79.30±15.31 | 77.88±12.08 | 0.413 |
QT (ms) | 292.66±35.08 | 304.00±37.07 | 296.37±35.96 | 0.138 |
QTc (ms) | 472.40±48.20 | 476.58±68.02 | 473.76±55.14 | 0.723 |
QTcd (ms) | 143.74±80.20 | 170.06±91.56 | 152.34±84.53 | 0.143 |
Item | Sensitivity (Recall) | Specificity | Accuracy | F1 |
---|---|---|---|---|
Randomly initialization model SR | 0.8701 | 0.8558 | 0.8596 | 0.7701 |
AVNRT | 0.8435 | 0.7665 | 0.6719 | 0.7436 |
AVRT | 0.0082 | 0.9955 | 0.7842 | 0.0160 |
Pre-trained model SR | 0.9675 | 0.9808 | 0.9772 | 0.9582 |
AVNRT | 0.8878 | 0.7029 | 0.7982 | 0.8195 |
AVRT | 0.3279 | 0.9330 | 0.8035 | 0.4167 |
Tab.4 Validation results of the randomly initialized model and pre-trained model
Item | Sensitivity (Recall) | Specificity | Accuracy | F1 |
---|---|---|---|---|
Randomly initialization model SR | 0.8701 | 0.8558 | 0.8596 | 0.7701 |
AVNRT | 0.8435 | 0.7665 | 0.6719 | 0.7436 |
AVRT | 0.0082 | 0.9955 | 0.7842 | 0.0160 |
Pre-trained model SR | 0.9675 | 0.9808 | 0.9772 | 0.9582 |
AVNRT | 0.8878 | 0.7029 | 0.7982 | 0.8195 |
AVRT | 0.3279 | 0.9330 | 0.8035 | 0.4167 |
Validation set | Total F1 | F1-AVNRT | F1-AVRT | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Lead II | 0.5597 | 0.7324 | 0.3871 | 0.6275 | 0.5588 | 0.5656 |
Lead III | 0.6061 | 0.7606 | 0.4516 | 0.6667 | 0.6029 | 0.6149 |
Lead V1 | 0.3419 | 0.2000 | 0.4839 | 0.3725 | 0.5000 | 0.5000 |
3-leads | 0.6003 | 0.6552 | 0.5455 | 0.6078 | 0.6324 | 0.6181 |
12-leads | 0.6136 | 0.7273 | 0.5000 | 0.6471 | 0.6176 | 0.6118 |
Tab.5 Testing results of the 3-lead and 12-lead models
Validation set | Total F1 | F1-AVNRT | F1-AVRT | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Lead II | 0.5597 | 0.7324 | 0.3871 | 0.6275 | 0.5588 | 0.5656 |
Lead III | 0.6061 | 0.7606 | 0.4516 | 0.6667 | 0.6029 | 0.6149 |
Lead V1 | 0.3419 | 0.2000 | 0.4839 | 0.3725 | 0.5000 | 0.5000 |
3-leads | 0.6003 | 0.6552 | 0.5455 | 0.6078 | 0.6324 | 0.6181 |
12-leads | 0.6136 | 0.7273 | 0.5000 | 0.6471 | 0.6176 | 0.6118 |
1 | Brugada J, Katritsis DG, Arbelo E, et al. 2019 ESC Guidelines for the management of patients with supraventricular tachycardiaThe Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2020, 41(5): 655-720. DOI: 10.1093/eurheartj/ehz827 |
2 | Peng G, Zei PC. Diagnosis and management of paroxysmal supraventricular tachycardia[J]. JAMA, 2024, 331(7): 601-10. DOI: 10.1001/jama.2024.0076 |
3 | Al Mehairi M, Al Ghamdi SA, Dagriri K, et al. The importance of utilizing 24-h Holter monitoring as a non-invasive method of predicting the mechanism of supraventricular tachycardia[J]. J Saudi Heart Assoc, 2011, 23(4): 241-3. DOI: 10.1016/j.jsha.2011.05.002 |
4 | Reed MJ, Grubb NR, Lang CC, et al. Multi-centre Randomised Controlled Trial of a Smartphone-based Event Recorder Alongside Standard Care Versus Standard Care for Patients Presenting to the Emergency Department with Palpitations and Pre-syncope: the IPED (Investigation of Palpitations in the ED) study[J]. E Clin Med, 2019, 8: 37-46. DOI: 10.1186/s13063-018-3098-1 |
5 | Toyohara K, Kudo Y, Takeuchi D, et al. Smartwatch detection of undiagnosed palpitations in a juvenile[J]. Intern Med, 2022, 61(17): 2691-2. DOI: 10.2169/internalmedicine.8621-21 |
6 | Tabing A, Harrell TE, Romero S, et al. Supraventricular tachycardia diagnosed by smartphone ECG[J]. BMJ Case Rep, 2017, 2017: bcr2016217197. DOI: 10.1136/bcr-2016-217197 |
7 | Bogossian H, Iliodromitis K, Robl S. Jump-Phänomen zur SVT-Induktion und die Korrelation mit der EKG-Dokumentation über die Apple Watch™[J]. Herzschrittmachertherapie+Elektrophysiologie, 2020, 31(4): 426-9. DOI: 10.1007/s00399-020-00722-7 |
8 | Kasai YH, Kasai J, Sekiguchi Y, et al. Apple Watch® facilitates single-session catheter ablation of coexisting atrioventricular nodal reentrant tachycardia and atrioventricular reentrant tachycardia[J]. Clin Case Rep, 2021, 9(8): e04702. DOI: 10.1002/ccr3.4702 |
9 | Wu SJ, Li CH, Lin JC, et al. Detecting supraventricular tachycardia with smartwatches facilitates the decision for catheter ablation: a case series[J]. Pacing Clin Electrophysiol, 2022, 45(1): 157-9. DOI: 10.1111/pace.14388 |
10 | Matsunaga K, Inoue T, Miyake Y, et al. Twelve-lead electrocardiography identifies the therapeutic target of paroxysmal supraventricular tachycardia[J]. J Arrhythm, 2019, 36(1): 211-3. DOI: 10.1002/joa3.12261 |
11 | Penfold MP, Cannon BC, Wackel PL. Empiric slow pathway cryoablation in symptomatic children without documented supraventricular tachycardia[J]. Pediatr Cardiol, 2024, 45(4): 921-5. DOI: 10.1007/s00246-022-03065-x |
12 | Cook DA, Oh SY, Pusic MV. Accuracy of physicians' electrocardiogram interpretations: a systematic review and meta-analysis[J]. JAMA Intern Med, 2020, 180(11): 1461-71. DOI: 10.1001/jamainternmed.2020.3989 |
13 | Kaneko I, Hayano J, Yuda E. How can gender be identified from heart rate data? Evaluation using ALLSTAR heart rate variability big data analysis[J]. BMC Res Notes, 2023, 16(1): 5. DOI: 10.1186/s13104-022-06270-2 |
14 | Galloway CD, Valys AV, Shreibati JB, et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram[J]. JAMA Cardiol, 2019, 4(5): 428-36. DOI: 10.1001/jamacardio.2019.0640 |
15 | Siontis KC, Noseworthy PA, Attia ZI, et al. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management[J]. Nat Rev Cardiol, 2021, 18(7): 465-78. DOI: 10.1038/s41569-020-00503-2 |
16 | Sau A, Ibrahim S, Kramer DB, et al. Artificial intelligence-enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia[J]. Cardiovasc Digit Health J, 2023, 4(2): 60-7. DOI: 10.1016/j.cvdhj.2023.01.004 |
17 | 王泓森, 陈 韬, 颜 勇, 等. 十二导联穿戴式心电设备院前诊断室上性心动过速的回顾性研究[J]. 中华保健医学杂志, 2022, 24(2): 87-90. |
18 | Lai JW, Tan HX, Wang JL, et al. Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset[J]. Nat Commun, 2023, 14(1): 3741. DOI: 10.1038/s41467-023-39472-8 |
19 | 赖杰伟, 陈韵岱, 韩宝石, 等. 基于DenseNet的心电数据自动诊断算法[J]. 南方医科大学学报, 2019, 39(1): 69-75. |
20 | Kucheryavskiy S, Rodionova O, Pomerantsev A. Procrustes cross-validation of multivariate regression models[J]. Anal Chim Acta, 2023, 1255: 341096. DOI: 10.1016/j.aca.2023.341096 |
21 | Liberman L, Pass RH, Starc TJ. Optimal surface electrocardiogram lead for identification of the mechanism of supraventricular tachycardia in children[J]. Pediatr Emerg Care, 2008, 24(1): 28-30. DOI: 10.1097/pec.0b013e31815f3992 |
22 | Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1): 65-9. DOI: 10.1038/s41591-018-0268-3 |
23 | Zhang Y, Liu S, He ZH, et al. A CNN model for cardiac arrhythmias classification based on individual ECG signals[J]. Cardiovasc Eng Technol, 2022, 13(4): 548-57. DOI: 10.1007/s13239-021-00599-8 |
24 | Yao Y, Yu BS, Gong C, et al. Understanding how pretraining regularizes deep learning algorithms[J]. IEEE Trans Neural Netw Learn Syst, 2023, 34(9): 5828-40. DOI: 10.1109/tnnls.2021.3131377 |
25 | Perlman O, Katz A, Amit G, et al. Supraventricular tachycardia classification in the 12-lead ECG using atrial waves detection and a clinically based tree scheme[J]. IEEE J Biomed Health Inform, 2016, 20(6): 1513-20. DOI: 10.1109/jbhi.2015.2478076 |
26 | Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201): 861-7. DOI: 10.1016/s0140-6736(19)31721-0 |
27 | Jo YY, Kwon JM, Jeon KH, et al. Artificial intelligence to diagnose paroxysmal supraventricular tachycardia using electrocardiography during normal sinus rhythm[J]. Eur Heart J Digit Health, 2021, 2(2): 290-8. DOI: 10.1093/ehjdh/ztab025 |
28 | Shen CP, Muse ED. Towards an artificial intelligence-augmented, ECG-enabled physical exam[J]. Lancet Digit Health, 2022, 4(2): e78-9. DOI: 10.1016/s2589-7500(21)00281-8 |
29 | Senoner T, Pfeifer B, Barbieri F, et al. Identifying the location of an accessory pathway in pre-excitation syndromes using an artificial intelligence-based algorithm[J]. J Clin Med, 2021, 10(19): 4394. DOI: 10.3390/jcm10194394 |
30 | Ding JW, Tang Y, Chang RH, et al. Reduction in the motion artifacts in noncontact ECG measurements using a novel designed electrode structure[J]. Sensors, 2023, 23(2): 956. DOI: 10.3390/s23020956 |
31 | Boriani G, Svennberg E, Guerra F, et al. Reimbursement practices for use of digital devices in atrial fibrillation and other arrhythmias: a European Heart Rhythm Association survey[J]. Europace, 2022, 24(11): 1834-43. DOI: 10.1093/europace/euac142 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||