南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (11): 2297-2308.doi: 10.12122/j.issn.1673-4254.2025.11.02
程丽丽1(
), 汤忠富1, 李明1,2, 陈君洁3, 尚双双1, 刘思娣1, 黄传兵1,2(
)
收稿日期:2025-06-13
出版日期:2025-11-20
发布日期:2025-11-28
通讯作者:
黄传兵
E-mail:3265544980@qq.com;chuanbinh@163.com
作者简介:程丽丽,在读博士研究生,医师,E-mail: 3265544980@qq.com
基金资助:
Lili CHENG1(
), Zhongfu TANG1, Ming LI1,2, Junjie CHEN3, Shuangshuang SHANG1, Sidi LIU1, Chuanbing HUANG1,2(
)
Received:2025-06-13
Online:2025-11-20
Published:2025-11-28
Contact:
Chuanbing HUANG
E-mail:3265544980@qq.com;chuanbinh@163.com
Supported by:摘要:
目的 分析芪黄健脾滋肾颗粒(QJZ)抑制MRL/lpr 小鼠肾B细胞分化的疗效并探讨其潜在机制。 方法 30只8周龄雌性MRL/lpr小鼠随机分为5组:模型组、QJZ组、泼尼松(Pred)组、QJZ+Pred组、黑素瘤缺乏因子2(AIM2)抑制剂组,6只/组,8周龄雌性C57BL/6小鼠为正常组,各组按相应方法连续处理8周。采用生化仪检测尿液尿总蛋白/尿肌酐(TPCR)、尿白蛋白/尿肌酐(ACR)及血清中肌酐(Scr)、尿素氮(BUN)水平;组织病理学染色(HE、Masson、过碘酸-雪夫)观察小鼠肾脏病理结构的变化;电镜观察肾脏超微结构变化;酶联免疫吸附测定抗dsDNA、细胞因子、趋化因子的变化;免疫组化观察肾脏中补体C3、C4沉积情况;免疫荧光观察肾脏中AIM2、CD19、CD27、CD138表达情况;流式细胞术分析脾脏 B 淋巴细胞亚群的变化,Western blotting检测B淋巴细胞诱导成熟蛋白1(Blimp-1)/B细胞淋巴瘤6蛋白(Bcl-6)信号轴的影响。 结果 QJZ改善了MRL/lpr小鼠的Cr、BUN、TPCR、ACR水平(P<0.05),并改善肾脏的病理变化,降低抗双链DNA抗体(ds-DNA)、B细胞活化因子(BAFF)、白细胞介素(IL)-21、CXC 趋化因子受体(CXCR)-12、CXCR-19、C3、C4表达,提高IL-10水平(P<0.05);Western blotting结果显示QJZ降低B细胞关键转录蛋白Blimp-1、X-box结合蛋白1(XBP-1)的表达,升高Bcl-6、配对盒5(PAX5)的表达(P<0.05);流式细胞术结果显示QJZ影响B细胞的分化,免疫荧光结果显示QJZ 可降低AIM2、CD27、CD138、CD69的表达。AIM2抑制可降低B细胞关键转录蛋白Blimp-1、XBP-1的表达,升高Bcl-6、PAX5的表达(P<0.05),抑制B细胞的分化,减少IgG生成,减少C3、C4的沉积,改善肾脏的病理变化。 结论 QJZ可能通过抑制AIM2/Blimp-1/Bcl-6信号通路影响B细胞分化抑制系统性红斑狼疮肾损害。
程丽丽, 汤忠富, 李明, 陈君洁, 尚双双, 刘思娣, 黄传兵. 芪黄健脾滋肾颗粒通过AIM2/Blimp-1/Bcl-6轴抑制B细胞分化改善MRL/lpr小鼠肾损害[J]. 南方医科大学学报, 2025, 45(11): 2297-2308.
Lili CHENG, Zhongfu TANG, Ming LI, Junjie CHEN, Shuangshuang SHANG, Sidi LIU, Chuanbing HUANG. Qihuang Jianpi Zishen Granules improves renal damage in MRL/lpr mice by inhibiting B cell differentiation via the AIM2/Blimp-1/Bcl-6 axis[J]. Journal of Southern Medical University, 2025, 45(11): 2297-2308.
图1 各组MRL/lpr小鼠肾功能的比较
Fig.1 Comparison of renal function among different groups of MRL/lpr mice. A: Expression levels of ACR in MRL/lpr mice in each group. B: Expression levels of TPCR in each group. C: Expression levels of Scr in each group. D: Expression levels of BUN in each group. *P<0.05, **P<0.01.
图2 各组MRL/lpr小鼠ds-DNA抗体、细胞因子、趋化因子水平的比较
Fig.2 Comparison of ds-DNA antibody, cytokine and chemokine levels in MRL/lpr mice in each group. A: Levels of ds-DNA in each group. B: Levels of IL-10 in each group. C: Levels of BAFF in each group. D: Levels of IL-21 in each group. E: Levels of CXCR-12 in each group. F: Levels of CXCR-19 in each group. **P<0.01.
图3 QJZ对MRL/lpr狼疮鼠肾脏病理的影响
Fig.3 Effect of QJZ on renal pathology in MRL/lpr lupus mice. A: Results of HE, PAS and Masson staining of the kidneys in each group (Scale bar=50 μm). B: Comparison of pathological AI scores of the kidneys in each group. C: Comparison of pathological CI scores of the kidneys in each group. *P<0.05, **P<0.01.
图4 各组小鼠肾小球透射电镜下超微结构的比较
Fig.4 Comparison of ultrastructural changes in renal glomeruli in each group under transmission electron microscopy (Scale bar=2 μm).
图5 各组MRL/lpr小鼠肾脏中C3、C4沉积水平的比较
Fig.5 Comparison of C3 and C4 deposition levels in the kidneys of MRL/lpr mice among the groups. A: Immunohistochemistry for detecting expressions of C3 and C4 in the kidneys in each group (×100). B: Average fluorescence intensity of C3 in the kidneys in each group. C: Average fluorescence intensity of C4 in each group. *P<0.05, **P<0.01.
图6 各组B细胞分化关键转录蛋白表达水平比较
Fig.6 Comparison of expression levels of key transcriptional proteins involved in B-cell differentiation in each group. A: Relative protein expression levels of Blimp-1 in each group. B: Relative protein expression levels of Bcl-6 in each group. C: Relative protein expression levels of XBP-1 in each group. D: Relative protein expression levels of PAX-5 in each group. E: Protein bands in Western blotting in each group. **P<0.01.
图9 各组MRL/lpr 小鼠肾组织CD19、CD138、IgG、AIM2表达的比较
Fig.9 Expression levels of CD19, CD138, IgG and AIM2 in the renal tissues of MRL/lpr mice in each group (Immunofluorescence staining; Scale bar=50 μm). A: CD19 expression levels in each group. B: CD138 expression levels in each group. C: IgG expression levels in each group. D: AIM2 expression levels in each group.
图10 AIM2抑制剂对MRL/lpr狼疮鼠肾损害的影响
Fig.10 Effect of AIM2 inhibitor on renal damage in MRL/lpr mice. A: Relative protein expression levels of Blimp-1 in each group. B: Relative protein expression levels of Bcl-6 in each group. C: Relative protein expression levels of PAX-5 in each group. D: Relative protein expression levels of XBP-1 in each group. E: Western blotting bands in each group. F: Results of HE, Masson, and PAS staining in each group (×200). G: Expression of IgG in each group (×200). H: Level of B cells in each group. I: Expression of C3 and C4 in each group (×200). **P<0.01.
| [1] | Lou HT, Ling GS, Cao XT. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target[J]. J Autoimmun, 2022, 132: 102861. doi:10.1016/j.jaut.2022.102861 |
| [2] | Rahman A, Isenberg DA. Systemic lupus erythematosus[J]. N Engl J Med, 2008, 358(9): 929-39. doi:10.1056/nejmra071297 |
| [3] | Canny SP, Jackson SW. B cells in systemic lupus erythematosus: from disease mechanisms to targeted therapies[J]. Rheum Dis Clin North Am, 2021, 47(3): 395-413. doi:10.1016/j.rdc.2021.04.006 |
| [4] | Arbitman L, Furie R, Vashistha H. B cell-targeted therapies in systemic lupus erythematosus[J]. J Autoimmun, 2022, 132: 102873. doi:10.1016/j.jaut.2022.102873 |
| [5] | Ma KY, Du WH, Wang XH, et al. Multiple functions of B cells in the pathogenesis of systemic lupus erythematosus[J]. Int J Mol Sci, 2019, 20(23): 6021. doi:10.3390/ijms20236021 |
| [6] | Choubey D, Panchanathan R. Absent in melanoma 2 proteins in SLE[J]. Clin Immunol, 2017, 176: 42-8. doi:10.1016/j.clim.2016.12.011 |
| [7] | Zhu H, Zhao M, Chang C, et al. The complex role of AIM2 in autoimmune diseases and cancers[J]. Immun Inflamm Dis, 2021, 9(3): 649-65. doi:10.1002/iid3.443 |
| [8] | Yi P, Cao PP, Yang M, et al. Overexpressed CD44 is associated with B-cell activation via the HA-CD44-AIM2 pathway in lupus B cells[J]. Clin Immunol, 2023, 255: 109710. doi:10.1016/j.clim.2023.109710 |
| [9] | Yang M, Long D, Hu LY, et al. AIM2 deficiency in B cells ameliorates systemic lupus erythematosus by regulating Blimp-1-Bcl-6 axis-mediated B-cell differentiation[J]. Signal Transduct Target Ther, 2021, 6(1): 341. doi:10.1038/s41392-021-00725-x |
| [10] | Shang SS, Li M, Jiang H, et al. The protective effects of qihuang Jianpi zishen decoction on mrl/lpr mice and its mechanism[J]. Pak J Pharm Sci, 2022, 35(6): 1627-35. |
| [11] | 李云飞, 庞利君, 束龙武, 等. 芪黄健脾滋肾颗粒可改善小鼠系统性红斑狼疮血小板减少: 基于Ca2+/CaMKK2/AMPK/mTOR信号通路介导的自噬[J]. 南方医科大学学报, 2024, 44(12): 2327-34. |
| [12] | 陈君洁, 黄传兵, 程丽丽, 等. 芪黄健脾滋肾颗粒调控JAK1/STAT1信号通路对MRL/lpr狼疮小鼠足细胞凋亡的影响[J]. 中成药, 2024, 46(12): 4145-50. |
| [13] | 尚双双, 李 明, 黄传兵. 芪黄健脾滋肾颗粒改善MRL/lpr小鼠肾脏损害机制研究[J]. 中国中西医结合杂志, 2025, 45(3): 321-9. |
| [14] | 陈君洁, 黄传兵, 李 明. 健脾滋肾方抑制系统性红斑狼疮患者的足细胞自噬: 基于网络药理学和临床研究[J]. 南方医科大学学报, 2024, 44(3): 465-73. |
| [15] | 汤忠富, 黄传兵, 李 明, 等. 芪黄健脾滋肾颗粒通过抑制MyD88/NF-κB通路减轻MRL/lpr小鼠肾损害[J/OL]. 南方医科大学学报, 2025, 45 (8): 1625-32. |
| [16] | Dobrowolski C, Lao SM, Kharouf F, et al. Lupus nephritis: biomarkers[J]. Adv Clin Chem, 2025, 124: 87-122. doi:10.1016/bs.acc.2024.10.002 |
| [17] | 庞利君, 黄传兵, 李 明, 等. 应用LC-MS/MS技术研究健脾滋肾方对系统性红斑狼疮鼠血清代谢物及代谢通路的影响[J]. 中国医院药学杂志, 2025, 45(4): 368-77. |
| [18] | 熊 峰. 槲皮素治疗系统性红斑狼疮模型MRL/Lpr鼠的疗效观察及机制研究[D]. 长沙: 中南大学, 2023. |
| [19] | 燕红梅. 中药狼疮方及其活性成分槲皮素对系统性红斑狼疮的治疗作用及可能机制的探索[D]. 广州: 华南理工大学, 2023. |
| [20] | 王 蕊, 刘 茜, 李 丽. 槲皮素对系统性红斑狼疮模型小鼠肾脏的保护作用及对其免疫功能的影响研究[J]. 临床和实验医学杂志, 2021, 20(21): 2252-6. |
| [21] | 王俊青, 余惠凡, 黄林生, 等. 金丝桃苷通过抑制YAP改善肾小管间质纤维化[J]. 华中科技大学学报: 医学版, 2025, 54(2): 190-7. |
| [22] | 王 超, 魏翠婷, 李 润, 等. 山柰酚通过改善肾小管上皮细胞的氧化应激与炎症反应减轻1型糖尿病小鼠肾损伤[J]. 解放军医学院学报, 2024, 45(3): 261-9. |
| [23] | 杨 亿. 芍药苷调控肠道菌群和Th17/Treg免疫平衡治疗系统性红斑狼疮[D]. 南昌: 南昌大学, 2024. |
| [24] | Dörner T, Szelinski F, Lino AC, et al. Therapeutic implications of the anergic/postactivated status of B cells in systemic lupus erythematosus[J]. RMD Open, 2020, 6(2): e001258. doi:10.1136/rmdopen-2020-001258 |
| [25] | Gao YN, Zhou JW, Huang Y, et al. Jiedu-Quyu-Ziyin Fang (JQZF) inhibits the proliferation and activation of B cells in MRL/lpr mice via modulating the AKT/mTOR/c-Myc signaling pathway[J]. J Ethnopharmacol, 2023, 315: 116625. doi:10.1016/j.jep.2023.116625 |
| [26] | Choubey D, Panchanathan R. Interferon (IFN)-inducible Absent in Melanoma 2 proteins in the negative regulation of the type I IFN response: Implications for lupus nephritis[J]. Cytokine, 2020, 132: 154682. doi:10.1016/j.cyto.2019.03.008 |
| [27] | Wortmann M, Xiao XH, Wabnitz G, et al. AIM2 levels and DNA-triggered inflammasome response are increased in peripheral leukocytes of patients with abdominal aortic aneurysm[J]. Inflamm Res, 2019, 68(4): 337-45. doi:10.1007/s00011-019-01212-4 |
| [28] | Ke PF, Zhu YT, Cao SL, et al. Identification of pattern recognition receptor genes in peripheral blood mononuclear cells and monocytes as biomarkers for the diagnosis of lupus nephritis[J]. Clin Chim Acta, 2024, 554: 117785. doi:10.1016/j.cca.2024.117785 |
| [29] | Sharma BR, Karki R, Kanneganti TD. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection[J]. Eur J Immunol, 2019, 49(11): 1998-2011. doi:10.1002/eji.201848070 |
| [30] | Svensson A, Patzi Churqui M, Schlüter K, et al. Maturation-dependent expression of AIM2 in human B-cells[J]. PLoS One, 2017, 12(8): e0183268. doi:10.1371/journal.pone.0183268 |
| [31] | Uresti-Rivera EE, García-Hernández MH. AIM2-inflammasome role in systemic lupus erythematous and rheumatoid arthritis[J]. Autoimmunity, 2022, 55(7): 443-54. doi:10.1080/08916934.2022.2103802 |
| [32] | Javierre BM, Fernandez AF, Richter J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus[J]. Genome Res, 2010, 20(2): 170-9. doi:10.1101/gr.100289.109 |
| [33] | Leite JA, Menezes L, Martins E, et al. AIM2 promotes TH17 cells differentiation by regulating RORγt transcription activity[J]. iScience, 2023, 26(11): 108134. doi:10.1016/j.isci.2023.108134 |
| [34] | Zhao JJ, Miller-Little W, Li XX. Inflammasome-independent functions of AIM2[J]. J Exp Med, 2021, 218(5): e20210273. doi:10.1084/jem.20210273 |
| [35] | Luu M, Krause FF, Monning H, et al. Dissecting the metabolic signaling pathways by which microbial molecules drive the differentiation of regulatory B cells[J]. Mucosal Immunol, 2025, 18(1): 66-75. doi:10.1016/j.mucimm.2024.09.003 |
| [36] | Faliti CE, Mesina M, Choi J, et al. Interleukin-2-secreting T helper cells promote extra-follicular B cell maturation via intrinsic regulation of a B cell mTOR-AKT-Blimp-1 axis[J]. Immunity, 2024, 57(12): 2772-89.e8. doi:10.1016/j.immuni.2024.11.006 |
| [37] | Qian GJ, Jiang WX, Sun DL, et al. B-cell-derived IL-10 promotes allergic sensitization in asthma regulated by Bcl-3[J]. Cell Mol Immunol, 2023, 20(11): 1313-27. doi:10.1038/s41423-023-01079-w |
| [38] | Caneparo V, Landolfo S, Gariglio M, et al. The absent in melanoma 2-like receptor IFN-inducible protein 16 as an inflammasome regulator in systemic lupus erythematosus: the dark side of sensing microbes[J]. Front Immunol, 2018, 9: 1180. doi:10.3389/fimmu.2018.01180 |
| [39] | Nakou M, Papadimitraki ED, Fanouriakis A, et al. Interleukin-21 is increased in active systemic lupus erythematosus patients and contributes to the generation of plasma B cells[J]. Clin Exp Rheumatol, 2013, 31(2): 172-9. |
| [1] | 汤忠富, 黄传兵, 李明, 程丽丽, 陈君洁, 尚双双, 刘思娣. 芪黄健脾滋肾颗粒通过抑制MyD88/NF-κB通路减轻MRL/lpr小鼠肾损害[J]. 南方医科大学学报, 2025, 45(8): 1625-1632. |
| [2] | 陈君洁, 黄传兵, 李 明. 健脾滋肾方抑制系统性红斑狼疮患者的足细胞自噬:基于网络药理学和临床研究[J]. 南方医科大学学报, 2024, 44(3): 465-473. |
| [3] | 李云飞, 庞利君, 束龙武, 李明, 黄传兵. 芪黄健脾滋肾颗粒可改善小鼠系统性红斑狼疮血小板减少:基于Ca2+/CaMKK2/AMPK/mTOR信号通路介导的自噬[J]. 南方医科大学学报, 2024, 44(12): 2327-2334. |
| [4] | 范景如, 张永海, 潘泽群, 王良玉, 洪旭伟, 吴令杰, 郭舜奇. COVID-19患者肺外多器官早期损害的临床分析[J]. 南方医科大学学报, 2020, 40(10): 1518-1524. |
| [5] | 黄雨茜,张 浩,张 双,孙 剑. 维生素D受体与MCP-1在系统性红斑狼疮患者中的表达及意义[J]. 南方医科大学学报, 2020, 40(01): 99-103. |
| [6] | 肖斌,李嘉颖,周梦思,李晓晴,黄晓燕,杭建峰,孙朝晖,李林海. B细胞连接蛋白的结构、功能及其在B细胞相关疾病发展中的作用[J]. 南方医科大学学报, 2019, 39(02): 253-. |
| [7] | 潘莹,黄思超,王霞,龚五星,梁翠微,杜均祥,彭东旭,谢云,郑礼平,张楠,全文. NF-κB亚单位p50/p65激活促进肺腺癌H1650细胞吉非替尼耐药[J]. 南方医科大学学报, 2018, 38(05): 584-. |
| [8] | 吴晓芳,王丽云,易建华,雷剑,奥宇宏,李建军,韩晶. 芍药苷对PM2.5诱导BEAS-2B细胞损害的保护作用[J]. 南方医科大学学报, 2018, 38(02): 168-. |
| [9] | 张庆,丁澍,张慧琳. 启动子区H3K27me3修饰异常促使系统性红斑狼疮患者CD4+ T细胞CREMα过表达[J]. 南方医科大学学报, 2017, 37(12): 1597-. |
| [10] | 陈婉乐,刘玉东,李雪兰,冯淑娴,周星宇,马伟旭,黎莹,叶德盛,陈薪,陈士岭. 早发性卵巢功能不全患者赠卵IVF获得妊娠在孕期合并系统性红斑狼疮:1例报告并文献复习[J]. 南方医科大学学报, 2017, 37(12): 1683-. |
| [11] | 王元元,李洪涛,陆杨,贾孝云,李杨磊,陈升,柴继侠,张佳佳,刘东,谢长好. 甘草酸对MRL/lpr小鼠狼疮性肾炎的治疗作用[J]. 南方医科大学学报, 2017, 37(07): 957-. |
| [12] | 宋秀珍,陈嘉棉,周秋根. 66例系统性红斑狼疮患者的妊娠转归[J]. 南方医科大学学报, 2016, 36(12): 1732-. |
| [13] | 欧阳辉,何雪常,周毅,李朝霞. 系统性红斑狼疮合并带状疱疹病毒感染的免疫抑制[J]. 南方医科大学学报, 2016, 36(11): 1577-. |
| [14] | 胡蓉华,孙婉玲,赵弘,惠吴函,郭轶先,万岁桂,苏力. 利妥昔单抗联合调整剂量EPOCH方案治疗胃肠道弥漫大B细胞淋巴瘤[J]. 南方医科大学学报, 2016, 36(09): 1291-. |
| [15] | 聂瑛洁,罗利梅,查艳,孙立,骆辑,潘润桑,田晓滨. 系统性红斑狼疮患者血浆降低间充质干细胞对B淋巴细胞的抑制作用[J]. 南方医科大学学报, 2016, 36(08): 1090-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||