南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (6): 1317-1326.doi: 10.12122/j.issn.1673-4254.2025.06.21
收稿日期:
2024-11-13
出版日期:
2025-06-20
发布日期:
2025-06-27
通讯作者:
车文刚
E-mail:2285873874@qq.com;goooglethink@gmail.com
作者简介:
计寰宇,在读硕士研究生,E-mail: 2285873874@qq.com
基金资助:
Huanyu JI1(), Rui WANG2, Shengxiang GAO1,4, Wengang CHE1,3(
)
Received:
2024-11-13
Online:
2025-06-20
Published:
2025-06-27
Contact:
Wengang CHE
E-mail:2285873874@qq.com;goooglethink@gmail.com
Supported by:
摘要:
目的 提出了一种新的黑色素瘤分割模型SG-UNet,以提高黑色素瘤皮肤镜图像的精确分割。通过分割后边界特征评估,可以更准确地识别诊断黑色素瘤从而辅助早期诊断。 方法 使用一种U形结构的卷积神经网络UNet,对其主干、跳跃连接和下采样池化部分进行改进。在主干部分,我们将UNet的下采样部分参考Vgg的结构将卷积数量由10个增加到13个加深网络层次来捕获更加精细的特征表示。为了进一步提升特征提取和细节识别的能力,主干部分将传统的卷积替换为自校准卷积增强模型对空间维度和通道维度特征的捕获能力。同时,在池化部分将哈尔小波下采样替换原有的池化层实现更有效的多尺度特征融合,并降低特征图的空间分辨率。接着将全局注意力机制融入到每一层的跳跃连接中更好地理解图像的上下文信息。 结果 实验结果表明SG-UNet在ISIC 2017和ISIC 2018数据集上的分割效果对比目前其他先进分割模型得到明显提升。在ISIC 2017和ISIC 2018数据集上Dice,IoU分别达到了92.41%,86.62%和92.31%,86.48%。 结论 实验结果证实,所提出的方法能够有效实现黑色素瘤的精确分割。
计寰宇, 王蕊, 高盛祥, 车文刚. SG-UNet:基于全局注意力和自校准卷积增强的黑色素瘤分割模型[J]. 南方医科大学学报, 2025, 45(6): 1317-1326.
Huanyu JI, Rui WANG, Shengxiang GAO, Wengang CHE. SG-UNet: a melanoma segmentation model enhanced with global attention and self-calibrated convolution[J]. Journal of Southern Medical University, 2025, 45(6): 1317-1326.
图7 黑色素瘤经Haar小波变换后得到的4个分量
Fig.7 Four components obtained from melanoma after Haar wavelet transform. A: Low-frequency information; H: Horizontal high-frequency information; V: Vertical high-frequency information; D: Diagonal high-frequency information.
Model | Dice | IoU | Recall | Precision |
---|---|---|---|---|
UNet[ | 89.46 | 82.13 | 90.44 | 89.64 |
UNet++[ | 89.65 | 82.36 | 89.98 | 90.30 |
AttUNet[ | 90.03 | 82.90 | 89.73 | 91.27 |
ResUNet[ | 90.86 | 84.26 | 91.51 | 91.20 |
ResUNet++[ | 91.29 | 84.87 | 91.94 | 91.45 |
FAT-Net[ | 89.03 | 82.02 | 91.00 | - |
CA-net[ | 85.35 | 74.44 | 78.76 | 93.14 |
CKDNet[ | 87.79 | 80.41 | 90.55 | - |
PraNet[ | 87.37 | 77.57 | 86.64 | 88.11 |
MSCNet[ | 90.51 | 82.67 | 89.61 | 91.84 |
DAGAN[ | 88.07 | 81.13 | 90.72 | - |
CPFNet[ | 87.69 | 79.88 | 89.53 | - |
Ours | 92.34 | 86.48 | 93.05 | 92.21 |
表1 ISIC 2018数据集各模型性能指标
Tab.1 Performance metrics for each model in the ISIC 2018 dataset
Model | Dice | IoU | Recall | Precision |
---|---|---|---|---|
UNet[ | 89.46 | 82.13 | 90.44 | 89.64 |
UNet++[ | 89.65 | 82.36 | 89.98 | 90.30 |
AttUNet[ | 90.03 | 82.90 | 89.73 | 91.27 |
ResUNet[ | 90.86 | 84.26 | 91.51 | 91.20 |
ResUNet++[ | 91.29 | 84.87 | 91.94 | 91.45 |
FAT-Net[ | 89.03 | 82.02 | 91.00 | - |
CA-net[ | 85.35 | 74.44 | 78.76 | 93.14 |
CKDNet[ | 87.79 | 80.41 | 90.55 | - |
PraNet[ | 87.37 | 77.57 | 86.64 | 88.11 |
MSCNet[ | 90.51 | 82.67 | 89.61 | 91.84 |
DAGAN[ | 88.07 | 81.13 | 90.72 | - |
CPFNet[ | 87.69 | 79.88 | 89.53 | - |
Ours | 92.34 | 86.48 | 93.05 | 92.21 |
Model | Dice | IoU | Recall | Precision |
---|---|---|---|---|
UNet[ | 89.20 | 81.98 | 91.24 | 88.81 |
UNet++[ | 89.50 | 82.23 | 91.22 | 88.92 |
AttUNet[ | 90.67 | 83.98 | 92.07 | 90.22 |
ResUNet[ | 91.98 | 85.99 | 93.21 | 91.51 |
ResUNet++[ | 90.60 | 84.05 | 92.62 | 89.96 |
FAT-Net[ | 85.00 | 76.53 | 83.92 | - |
CA-net[ | 86.30 | 75.91 | 85.45 | 87.18 |
DAGAN[ | 84.25 | 75.94 | 83.63 | - |
SESV[ | 83.92 | 75.31 | 83.26 | - |
PraNet[ | 87.71 | 78.23 | 87.58 | 87.84 |
MB-DCNN[ | 84.27 | 76.03 | 83.25 | - |
MSCNet[ | 90.99 | 83.47 | 91.11 | 90.87 |
CPFNet[ | 84.03 | 75.46 | 83.44 | - |
Ours | 92.41 | 86.62 | 93.70 | 91.80 |
表2 ISIC 2017数据集各模型性能指标
Tab.2 Performance metrics for each model in the ISIC 2017 dataset
Model | Dice | IoU | Recall | Precision |
---|---|---|---|---|
UNet[ | 89.20 | 81.98 | 91.24 | 88.81 |
UNet++[ | 89.50 | 82.23 | 91.22 | 88.92 |
AttUNet[ | 90.67 | 83.98 | 92.07 | 90.22 |
ResUNet[ | 91.98 | 85.99 | 93.21 | 91.51 |
ResUNet++[ | 90.60 | 84.05 | 92.62 | 89.96 |
FAT-Net[ | 85.00 | 76.53 | 83.92 | - |
CA-net[ | 86.30 | 75.91 | 85.45 | 87.18 |
DAGAN[ | 84.25 | 75.94 | 83.63 | - |
SESV[ | 83.92 | 75.31 | 83.26 | - |
PraNet[ | 87.71 | 78.23 | 87.58 | 87.84 |
MB-DCNN[ | 84.27 | 76.03 | 83.25 | - |
MSCNet[ | 90.99 | 83.47 | 91.11 | 90.87 |
CPFNet[ | 84.03 | 75.46 | 83.44 | - |
Ours | 92.41 | 86.62 | 93.70 | 91.80 |
Model | SCConv | HWD | GAM | Dice | IoU | Recall | Precision |
---|---|---|---|---|---|---|---|
Baseline | × | × | × | 89.20 | 81.98 | 91.24 | 88.81 |
Model① | × | × | × | 89.26 | 81.78 | 91.96 | 87.87 |
Model② | × | √ | × | 91.05 | 84.54 | 92.21 | 90.73 |
Model③ | × | √ | √ | 91.39 | 85.05 | 92.94 | 90.75 |
Model④ | √ | √ | √ | 92.41 | 86.62 | 93.70 | 91.80 |
表3 ISIC2017数据集上的消融实验结果
Tab.3 Ablation study results on the ISIC dataset
Model | SCConv | HWD | GAM | Dice | IoU | Recall | Precision |
---|---|---|---|---|---|---|---|
Baseline | × | × | × | 89.20 | 81.98 | 91.24 | 88.81 |
Model① | × | × | × | 89.26 | 81.78 | 91.96 | 87.87 |
Model② | × | √ | × | 91.05 | 84.54 | 92.21 | 90.73 |
Model③ | × | √ | √ | 91.39 | 85.05 | 92.94 | 90.75 |
Model④ | √ | √ | √ | 92.41 | 86.62 | 93.70 | 91.80 |
Model | SCConv | HWD | GAM | Dice | IoU | Recall | Precision |
---|---|---|---|---|---|---|---|
Baseline | × | × | × | 89.46 | 82.13 | 90.44 | 89.64 |
Model① | × | × | × | 90.17 | 83.06 | 91.08 | 90.03 |
Model② | × | √ | × | 91.35 | 84.89 | 91.84 | 91.54 |
Model③ | × | √ | √ | 91.38 | 84.88 | 91.70 | 91.68 |
Model④ | √ | √ | √ | 92.34 | 86.48 | 93.05 | 92.21 |
表4 ISIC2018数据集上的消融实验结果
Tab.4 Ablation study results on the ISIC 2018 dataset
Model | SCConv | HWD | GAM | Dice | IoU | Recall | Precision |
---|---|---|---|---|---|---|---|
Baseline | × | × | × | 89.46 | 82.13 | 90.44 | 89.64 |
Model① | × | × | × | 90.17 | 83.06 | 91.08 | 90.03 |
Model② | × | √ | × | 91.35 | 84.89 | 91.84 | 91.54 |
Model③ | × | √ | √ | 91.38 | 84.88 | 91.70 | 91.68 |
Model④ | √ | √ | √ | 92.34 | 86.48 | 93.05 | 92.21 |
1 | Mateen M, Hayat S, Arshad F, et al. Hybrid deep learning framework for melanoma diagnosis using dermoscopic medical images[J]. Diagnostics, 2024, 14(19): 2242. doi:10.3390/diagnostics14192242 |
2 | Ali AR, Li JP, O'Shea SJ, et al. A deep learning based approach to skin lesion border extraction with a novel edge detector in dermoscopy images[C]//2019 International Joint Conference on Neural Networks (IJCNN). July 14-19, 2019, Budapest, Hungary. IEEE, 2019: 1-7. doi:10.1109/ijcnn.2019.8852134 |
3 | Ali AR, Li JP, Yang G, et al. A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images[J]. PeerJ Comput Sci, 2020, 6: e268. doi:10.7717/peerj-cs.268 |
4 | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-41. doi:10.1007/978-3-319-24574-4_28 |
5 | Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015: 3431-40. doi:10.1109/cvpr.2015.7298965 |
6 | Wang G, Ma QS, Li YY, et al. A skin lesion segmentation network with edge and body fusion[J]. Appl Soft Comput, 2025, 170: 112683. doi:10.1016/j.asoc.2024.112683 |
7 | Wu HS, Chen SH, Chen GL, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation[J]. Med Image Anal, 2022, 76: 102327. doi:10.1016/j.media.2021.102327 |
8 | 王 娜, 贾 伟, 赵雪芬, 等. 基于边缘关键点和边缘注意力的黑色素瘤图像分割方法[J].中国医学物理学杂志 [J]. 2024, 41(10): 1225-36. |
9 | Liu Y, Shao Z, Hoffmann N. Global attention mechanism: Retain information to enhance channel-spatial interactions [J]. 2021, DOI:10.48550/arXiv.2112.05561 . |
10 | Liu JJ, Hou QB, Cheng MM, et al. Improving convolutional networks with self-calibrated convolutions[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 10093-102. doi:10.1109/cvpr42600.2020.01011 |
11 | Xu GP, Liao WT, Zhang X, et al. Haar wavelet downsampling: a simple but effective downsampling module for semantic segmentation[J]. Pattern Recognit, 2023, 143: 109819. doi:10.1016/j.patcog.2023.109819 |
12 | Niu ZY, Zhong GQ, Yu H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. doi:10.1016/j.neucom.2021.03.091 |
13 | Upadhyay AK, Bhandari AK. Advances in deep learning models for resolving medical image segmentation data scarcity problem: a topical review[J]. Arch Comput Meth Eng, 2024, 31(3): 1701-19. doi:10.1007/s11831-023-10028-9 |
14 | Woo S, Park J, Lee JY, et al. CBAM: convolutional block attention module[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. doi:10.1007/978-3-030-01234-2_1 |
15 | Ioannou Y, Robertson D, Cipolla R, et al. Deep roots: improving CNN efficiency with hierarchical filter groups[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 5977-86. doi:10.1109/cvpr.2017.633 |
16 | Porwik P, Lisowska A. The haar–wavelet transform in digital image processing: its status and achievements[J]. Instit Comp Sci, 2004,13:79-98. |
17 | Makandar A, Halalli B. Image enhancement techniques using highpass and lowpass filters[J]. Int J Comput Appl, 2015, 109(14): 21-7. doi:10.5120/19256-0999 |
18 | Zaynidinov H. Digital image processing with two-dimensional haar wavelets[J]. Int J Adv Trends Comput Sci Eng, 2020, 9(3): 2729-34. doi:10.30534/ijatcse/2020/38932020 |
19 | Codella NCF, Gutman D, Celebi ME, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). April 4-7, 2018, Washington, DC, USA. IEEE, 2018: 168-72. doi:10.1109/isbi.2018.8363547 |
20 | Codella N, Rotemberg V, Tschandl P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)[EB/OL]. 2019: 1902.03368. . doi:10.48550/arXiv.1902.03368 |
21 | Jiang HY, Diao ZS, Shi TY, et al. A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation[J]. Comput Biol Med, 2023, 157: 106726. doi:10.1016/j.compbiomed.2023.106726 |
22 | Soomro TA, Afifi AJ, Gao JB, et al. Strided U-Net model: retinal vessels segmentation using dice loss[C]//2018 Digital Image Computing: Techniques and Applications (DICTA). December 10-13, 2018, Canberra, ACT, Australia. IEEE, 2018: 1-8. doi:10.1109/dicta.2018.8615770 |
23 | Cheng BW, Girshick R, Dollár P, et al. Boundary IoU: improving object-centric image segmentation evaluation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, TN, USA. IEEE, 2021: 15329-37. doi:10.1109/cvpr46437.2021.01508 |
24 | Shamir RR, Duchin Y, Kim J, et al. Continuous dice coefficient: a method for evaluating probabilistic segmentations [J]. 2018, DOI:10.1101/306977 . |
25 | Zhou ZW, Siddiquee MMR, Tajbakhsh N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Trans Med Imaging, 2020, 39(6): 1856-67. doi:10.1109/tmi.2019.2959609 |
26 | Wang SH, Li L, Zhuang XH. AttU-NET: attention U-Net for brain tumor segmentation[M]//Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer International Publishing, 2022: 302-11. doi:10.1007/978-3-031-09002-8_27 |
27 | Rahman H, Bukht TFN, Imran A, et al. A deep learning approach for liver and tumor segmentation in CT images using ResUNet[J]. Bioengineering, 2022, 9(8): 368. doi:10.3390/bioengineering9080368 |
28 | Jha D, Smedsrud PH, Riegler MA, et al. ResUNet: an advanced architecture for medical image segmentation[C]//2019 IEEE International Symposium on Multimedia (ISM). December 9-11, 2019, San Diego, CA, USA. IEEE, 2019: 225-2255. doi:10.1109/ism46123.2019.00049 |
29 | Gu R, Wang GT, Song T, et al. CA-net: comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Trans Med Imaging, 2021, 40(2): 699-711. doi:10.1109/tmi.2020.3035253 |
30 | Jin QG, Cui H, Sun CM, et al. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation[J]. Appl Soft Comput, 2021, 99: 106881. doi:10.1016/j.asoc.2020.106881 |
31 | Feng SL, Zhao HM, Shi F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Trans Med Imaging, 2020, 39(10): 3008-18. doi:10.1109/tmi.2020.2983721 |
32 | Xie YT, Zhang JP, Xia Y, et al. A mutual bootstrapping model for automated skin lesion segmentation and classification[J]. IEEE Trans Med Imaging, 2020, 39(7): 2482-93. doi:10.1109/tmi.2020.2972964 |
33 | Yang G, Yu SM, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction[J]. IEEE Trans Med Imaging, 2018, 37(6): 1310-21. doi:10.1109/tmi.2017.2785879 |
34 | Fan DP, Ji GP, Zhou T, et al. PraNet: parallel reverse attention network for polyp segmentation[M]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2020. Cham: Springer International Publishing, 2020: 263-73. doi:10.1007/978-3-030-59725-2_26 |
35 | Xie YT, Zhang JP, Lu H, et al. SESV: accurate medical image segmentation by predicting and correcting errors[J]. IEEE Trans Med Imag, 2021, 40(1): 286-96. doi:10.1109/tmi.2020.3025308 |
36 | Li Z, Zhang L. Multi-scale context fusion network for melanoma segmentation[J]. KSII Trans Internet Inf Syst, 2024, 18(7): 1888-906. doi:10.3837/tiis.2024.07.009 |
[1] | 庞金龙, 赵新丽, 张振, 王豪杰, 周星琦, 杨玉梅, 李姗姗, 常小强, 李锋, 李娴. 皮肤黑色素瘤中MMRN2高表达促进肿瘤细胞的侵袭和迁移并与不良预后相关[J]. 南方医科大学学报, 2025, 45(7): 1479-1489. |
[2] | 赵倩, 张振, 周星琦, 荣翔宇, 刘雪柔, 赵新丽, 王豪杰, 庞金龙, 李姗姗, 李娴. 川芎增强替莫唑胺对小鼠脑转移黑色素瘤脑的抑制作用[J]. 南方医科大学学报, 2024, 44(6): 1088-1097. |
[3] | 石文惠, 刘小莲, 张贵明, 叶林萱, 周润华, 李亦蕾, 余 乐. RITA体外选择性抑制BAP1缺失的皮肤黑色素瘤细胞的生长[J]. 南方医科大学学报, 2023, 43(5): 710-717. |
[4] | 李 娟, 王爱莲, 李 宁, 祝英泽, 李 坤, 刘 浩, 高自清. Aumolertinib可体内外抑制人脉络膜黑色素瘤MUM-2B细胞的增殖[J]. 南方医科大学学报, 2022, 42(11): 1604-1610. |
[5] | 钟友闻, 车文刚, 高盛祥. 轻型多尺度黑色素瘤目标检测网络模型的建立:基于注意力机制调控[J]. 南方医科大学学报, 2022, 42(11): 1662-1671. |
[6] | 刘忠强, 钟 涛, 曹晓欢, 张 煜. 基于组织修复的脑肿瘤图像配准方法[J]. 南方医科大学学报, 2021, 41(2): 292-298. |
[7] | 罗 昕, 任重鲁, 刘小莲, 张贵明, 黄思思, 余 乐, 李亦蕾. 靶向SF3B1突变型葡萄膜黑色素瘤的药物筛选[J]. 南方医科大学学报, 2021, 41(12): 1835-1842. |
[8] | 杨 鑫, 李学妍, 张晓婷, 宋 凡, 黄思娟, 夏云飞. 基于自适应Unet网络的鼻咽癌放疗危及器官自动分割方法[J]. 南方医科大学学报, 2020, 40(11): 1579-1586. |
[9] | 刘严友葓,徐虹铃,赖 楠,杨子科,康世均 . 过表达IL-12的恶性黑色素瘤细胞在肿瘤免疫微环境重建过程中抑制T细胞表面PD-1的表达[J]. 南方医科大学学报, 2020, 40(06): 856-863. |
[10] | 邓旋,兰天俊,张明慧,陈之锋,陶谦,卢振泰. 基于局部灰度差异的快速自适应活动轮廓模型分割腮腺导管[J]. 南方医科大学学报, 2018, 38(12): 1485-. |
[11] | 黄奕晖,冯前进. 基于三维全卷积DenseNet的脑胶质瘤MRI分割[J]. 南方医科大学学报, 2018, 38(06): 661-. |
[12] | 门颖丽,康巧珍,丁聪,刘诗梦,江慧,王晓东,汲振余,刘鑫,王婷. 蛋白4.1家族在小鼠黑色素瘤细胞中的表达及其对细胞增殖的影响[J]. 南方医科大学学报, 2016, 36(05): 649-. |
[13] | 温锐,陈宏文,张雷,卢振泰. 基于引导滤波的多图谱医学图像分割[J]. 南方医科大学学报, 2015, 35(09): 1263-. |
[14] | 张雷,张明慧,卢振泰,冯前进,陈武凡. 基于多权重概率图谱的脑部图像分割[J]. 南方医科大学学报, 2015, 35(08): 1143-. |
[15] | 李欢,袁世梅,杨敏,段亮,王海燕,查何,李雪茹,孙晖,翁亚光,罗进勇,何通川,李崇雁,王嫣,李发琪,王志彪,周兰. 高强度聚焦超声抑制小鼠黑色素瘤细胞B16-F10在体内的转移[J]. 南方医科大学学报, 2015, 35(02): 223-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||