南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (6): 1317-1326.doi: 10.12122/j.issn.1673-4254.2025.06.21

• • 上一篇    下一篇

SG-UNet:基于全局注意力和自校准卷积增强的黑色素瘤分割模型

计寰宇1(), 王蕊2, 高盛祥1,4, 车文刚1,3()   

  1. 1.昆明理工大学,信息工程与自动化学院,云南 昆明 650500
    2.昆明城市学院数据科学与工程学院,云南 昆明 650106
    3.昆明理工大学,云南省计算机技术应用重点实验室,云南 昆明 650500
    4.昆明理工大学,云南省人工智能重点实验室,云南 昆明 650500
  • 收稿日期:2024-11-13 出版日期:2025-06-20 发布日期:2025-06-27
  • 通讯作者: 车文刚 E-mail:2285873874@qq.com;goooglethink@gmail.com
  • 作者简介:计寰宇,在读硕士研究生,E-mail: 2285873874@qq.com
  • 基金资助:
    国家自然科学基金(U23A20388);云南省重点研发计划(202303AP140008);云南省基础研究项目(202301AT070393);昆明理工大学“双一流”科技专项(202402AG050007)

SG-UNet: a melanoma segmentation model enhanced with global attention and self-calibrated convolution

Huanyu JI1(), Rui WANG2, Shengxiang GAO1,4, Wengang CHE1,3()   

  1. 1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
    2.School of Data Science and Engineering, Kunming City College, Kunming 650106, China
    3.Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science and Technology, Kunming 650500, China
    4.Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2024-11-13 Online:2025-06-20 Published:2025-06-27
  • Contact: Wengang CHE E-mail:2285873874@qq.com;goooglethink@gmail.com
  • Supported by:
    National Natural Science Foundation of China(U23A20388)

摘要:

目的 提出了一种新的黑色素瘤分割模型SG-UNet,以提高黑色素瘤皮肤镜图像的精确分割。通过分割后边界特征评估,可以更准确地识别诊断黑色素瘤从而辅助早期诊断。 方法 使用一种U形结构的卷积神经网络UNet,对其主干、跳跃连接和下采样池化部分进行改进。在主干部分,我们将UNet的下采样部分参考Vgg的结构将卷积数量由10个增加到13个加深网络层次来捕获更加精细的特征表示。为了进一步提升特征提取和细节识别的能力,主干部分将传统的卷积替换为自校准卷积增强模型对空间维度和通道维度特征的捕获能力。同时,在池化部分将哈尔小波下采样替换原有的池化层实现更有效的多尺度特征融合,并降低特征图的空间分辨率。接着将全局注意力机制融入到每一层的跳跃连接中更好地理解图像的上下文信息。 结果 实验结果表明SG-UNet在ISIC 2017和ISIC 2018数据集上的分割效果对比目前其他先进分割模型得到明显提升。在ISIC 2017和ISIC 2018数据集上Dice,IoU分别达到了92.41%,86.62%和92.31%,86.48%。 结论 实验结果证实,所提出的方法能够有效实现黑色素瘤的精确分割。

关键词: 图像分割, 全局注意力机制, 黑色素瘤, UNet, 自校准卷积, 哈尔小波下采样, SG-UNet

Abstract:

Objective We propose a new melanoma segmentation model, SG-UNet, to enhance the precision of melanoma segmentation in dermascopy images to facilitate early melanoma detection. Methods We utilized a U-shaped convolutional neural network, UNet, and made improvements to its backbone, skip connections, and downsampling pooling sections. In the backbone, with reference to the structure of VGG, we increased the number of convolutions from 10 to 13 in the downsampling part of UNet to achieve a deepened network hierarchy that allowed capture of more refined feature representations. To further enhance feature extraction and detail recognition, we replaced the traditional convolution the backbone section with self-calibrated convolution to enhance the model's ability to capture both spatial and channel dimensional features. In the pooling part, the original pooling layer was replaced by Haar wavelet downsampling to achieve more effective multi-scale feature fusion and reduce the spatial resolution of the feature map. The global attention mechanism was then incorporated into the skip connections at each layer to enhance the understanding of contextual information of the image. Results The experimental results showed that the SG-UNet model achieved significantly improved segmentation accuracy on ISIC 2017 and ISIC 2018 datasets as compared with other current state-of-the-art segmentation models, with Dice reached 92.41% and 86.62% and IoU reaching 92.31% and 86.48% on the two datasets, respectively. Conclusion The proposed model is capable of effective and accurate segmentation of melanoma from dermoscopy images.

Key words: image segmentation, global attention mechanism, melanoma, UNet, self-calibrated convolution, Haar wavelet downsampling, SG-UNet